ON THE ASSESSMENT OF SOUND, DETERIORATING AND COLLAPSED STRUCTURES

Peter Tanner. Carlos Lara. Ramon Hingorani. Miguel Prieto

Introduction

MOTIVATION

– The need to assess the reliability of an existing structure may arise from different causes
– All can be traced back to doubts about the structural safety

→ Reliability ok for future use?
MOTIVATION

Fundamental problem is to find an answer to the question: is the structure safe enough?

Only two possible answers: yes or no

Wrong decisions may imply significant consequences

Introduction

MORE DOUBTS ABOUT STRUCTURAL SAFETY

Derailment of overhead gantry for erection of precast bridge girders

No problems during previous construction stages under identical conditions

How could this happen?
MORE DOUBTS ABOUT STRUCTURAL SAFETY

- Wrong decisions may imply significant consequences
- Also for experts...

ASSESSMENT VS. DESIGN

<table>
<thead>
<tr>
<th>Structures</th>
<th>Existing</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available information</td>
<td>“Measurable” characteristics</td>
<td>Assumed characteristics</td>
</tr>
<tr>
<td>Reliability depends on</td>
<td>Available data Knowledge</td>
<td>Variables according to codes</td>
</tr>
<tr>
<td>Reliability</td>
<td>subjective</td>
<td>+/- objective</td>
</tr>
</tbody>
</table>

→ Fundamental difference lies in the state of information
→ Staged evaluation procedure, improving accuracy of data
ON THE ASSESSMENT OF SOUND, DETERIORATING AND COLLAPSED STRUCTURES

– Introduction
– Updated models for the assessment of sound structures
– Corrosion-damaged reinforced concrete structures
– Analysis of the deteriorating main dome over La Laguna cathedral
– Collapse of the River Verde viaduct scaffolding system
– Final remarks

Influence of updated information

ASSESSMENT WITH PARTIAL FACTOR METHOD

– Probabilistic methods are most accurate to take into account updated information
– But they are not fit for use in daily practice
– Partial factor method should be available for assessment

$$\gamma_{G,act} \cdot E_{k,act} \leq \frac{R_{k,act}}{\gamma_{R,act}}$$
ASSESSMENT WITH PARTIAL FACTOR METHOD

- Updated characteristic value of X

- Updated partial factor $\gamma_{X,act}$
 - Can not be derived directly
 - Link between probabilistic and partial factor methods: design point, the most probable failure point on LS surface

DEVELOPMENT OF PRACTICAL TOOLS FOR THE ASSESSMENT

- Identification of representative failure modes and LSF
- Adoption of partial factor format for assessment
- Definition of reference period
- Deduction of default probabilistic models
- Establishment of required reliability
- Updating of characteristic values and partial factors
PARTIAL FACTOR FORMAT FOR ASSESSMENT

– Design value for action effects

\[E_{d,act} = \gamma_{Sd,act} \cdot E \left\{ \sum_{j=1}^{n} \gamma_{g,j,act} \cdot G_{k,j,act} \cdot \gamma_{q,j,act} \cdot Q_{k,j,act} \right\} \]

\(\gamma_{f,i,act} \) Updated partial factor for actions (statistical variation)
\(\gamma_{Sd,act} \) Updated partial factor for the models for action effects and for the simplified representation of actions

– Model uncertainties vary depending on the action effects → distinguish between

\(\gamma_{Sd,M,act} \) Bending moments
\(\gamma_{Sd,V,act} \) Shear forces
\(\gamma_{Sd,N,act} \) Axial forces

– Format differs from EC but is more accurate for evaluation

PARTIAL FACTOR FORMAT FOR ASSESSMENT

– Design value for resistance

\[R_{d,act} = \frac{1}{\gamma_{Rd,act}} \cdot R \left\{ \gamma_{li,act} \cdot X_{k,i,act} ; \alpha_{d,act} \right\} \]

\(\gamma_{m,i,act} \) Updated partial factor for the material or product property
\(\gamma_{Rd,act} \) Updated partial factor for the resistance model

– Model uncertainties vary depending on the resistance mechanism → distinguish between (RC structures)

\(\gamma_{Rd,M,act} \) Bending moments
\(\gamma_{Rd,V,act} \) Tensile forces in the web
\(\gamma_{Rd,V,c,act} \) Diagonal compression forces in the web
\(\gamma_{Rd,N,act} \) Axial compression forces

– Format differs from EC-2 but is more accurate for evaluation
DEFAULT PROBABILISTIC MODELS COMPLYING WITH THE FOLLOWING REQUIREMENTS

- Representation of physical properties of the corresponding variable
- Consistency with JCSS models
- Representation of the state of uncertainty associated with code rules
- Representation of uncertainties by means of random variables, suitable for practical applications

\[X_i = \text{Type}(\mu_X, \sigma_X) \]

UPDATED PARTIAL FACTORS

- For example partial factor for concrete strength versus CoV

\[R_{d,\text{act}} = R \left\{ \frac{1}{\gamma_{Rd,\text{act}}} \cdot \gamma_{c,\text{act}}, a_{d,\text{act}} \right\} \]

Definition \(\gamma_c \neq \gamma_{c,\text{EC-2}} \)

Comparable \(\gamma_c \cdot \gamma_{Rd} \leftrightarrow \gamma_{c,\text{EC-2}} \)
EXAMPLE
– Assessment of existing RC structure for new conditions
– Site data collection has been decided, planned and carried out
→ Sample of n test results is available for updating of reinforcement yield strength, \(f_{ys} \)

PROCEDURE
1. Statistical evaluation of results of observations
 → PDF: \(f_x(x) \)
2. Combination of the results of observations with the available prior information (default probabilistic models)
PROCEDURE

3. Description of the updated distribution function by means of relevant parameters: Type; $\mu_{X,\text{act}}$, $\sigma_{X,\text{act}}$, $x_{k,\text{act}}$

4. Coefficient of variation for the relevant function of updated random variables, depending on the partial factor format for assessment

EXAMPLE

– Partial factor for reinforcing steel takes into account
 – Uncertainties related to the yield strength, f_{ys}
 – Uncertainties related to the cross-sectional area, A_s

– f_{ys} and A_s enter the LSF as a product: tensile force \rightarrow $F_{ys} = f_{ys} \cdot A_s$

– Only f_{ys} has been updated

– Updated coefficient of variation for the tensile force

\[V_{Fys,\text{act}} \approx \sqrt{V_{fys,\text{act}}^2 + V_{As}^2} \]

where $V_{fys,\text{act}} = \sigma_{fys,\text{act}} / \mu_{fys,\text{act}}$ and $V_{As} = 0.02$.
PROCEDURE

5. Updated partial factor, considering the updated variable dominating or non dominating (unknown in advance)

![Graph showing updated partial factors](image1)

PROCEDURE

6. Verification of structural safety with updated characteristic values and partial factors: $x_{ik,act}$, $\gamma_{Xi,act}$

Dominating variable unknown in advance \Rightarrow trial and error or considering α_x

![Graph showing verification of structural safety](image2)
EXAMPLE

- Verification of bending resistance of RC element
- Only f_{ys} has been updated
- Dominating resistance variable: F_{ys}
- Verification of structural safety: $M_{Ed,act} \leq M_{Rd,act}$

$$M_{Rd,act} = \frac{1}{\gamma_{Rd,M}} \left(\frac{A_s \cdot f_{ys,k,act}}{\gamma_{s,act,\delta}} \cdot d - 0.5 \left(\frac{A_s \cdot f_{ys,k,act}}{\gamma_{s,act,\delta}} \right)^2 \cdot \frac{\gamma_c}{\eta_c} \cdot f_{ck} \cdot b \right)$$

ON THE ASSESSMENT OF SOUND, DETERIORATING AND COLLAPSED STRUCTURES

- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- Analysis of the deteriorating main dome over La Laguna cathedral
- Collapse of the River Verde viaduct scaffolding system
- Final remarks
MAIN EFFECTS OF CORROSION OF REINFORCEMENT BARS

1. Decrease of bar cross-section
2. Stress concentrations due to uneven corrosion
3. Decrease of ductility of steel (ε_u: reduction of 30 to 50%)
4. Bond deterioration
5. Cracking and loss of concrete cover (corrosion products)

Corrosion may affect performance at ULS and SLS

ASSUMPTIONS

- Lower bound theorem of the theory of plasticity is valid
 A load system, based on a statically admissible stress field which nowhere violates the yield condition is a lower bound to the collapse load.
- Stress field models can be established
- Required information
 - Geometry, particularly remaining bar cross-sections
 - Material properties
 - Bond strength
SITE DATA COLLECTION
- Geometry and material properties can be updated

BOND STRENGTH
- Updating is difficult
- Experimental and numerical study has been conducted
- Normalized bond strength available

Normalized bond strength for corroded bars
- 95% fractile
- 5% fractile
- Linear Regression (corr > 5 %)
- Linear Regression (corr < 5 %)
- Linear Regression (No corrosion)
SIMPLE MODELS
– Example: bending resistance

\[A_A(t) = \frac{\pi}{4} (\phi_0 - a(t))^2 \]

Upper bound: active
Lower bound: disregarded (spalling)

\(\text{Environmental action} \)

→ Similar rules for other failure modes, including shear, and SLS

ON THE ASSESSMENT OF SOUND, DETERIORATING AND COLLAPSED STRUCTURES
– Introduction
– Updated models for the assessment of sound structures
– Corrosion-damaged reinforced concrete structures
– Analysis of the deteriorating main dome over La Laguna cathedral
– Collapse of the River Verde viaduct scaffolding system
– Final remarks
SAN CRISTÓBAL DE LA LAGUNA
– Historic city located in Tenerife
– Typical urban structure developed in Latin America during colonisation
→ Declared a UNESCO World Heritage Site in 1999

CATHEDRAL
– Built over former church of Nuestra Señora de los Remedios
– Cathedral since 1818
– Declared in ruins in 1897 due to settlements induced damage
→ Except neo-classical facade, it was completely demolished
CATHEDRAL
– Rebuilt between 1905 and 1913 in neo-gothic style according to engineering drawings by José Rodrigo Vallabriga
– Novel technology was used: reinforced concrete
 – Shorter construction time
 – Lower costs

Context

Motivation

RISKS ASSOCIATED WITH SCANTILY PROVEN TECHNOLOGY
– Aggregates with inbuilt sulfates, chlorides, seashells, ...
– Concrete with high porosity and low resistivity
– High relative humidity and filtration of rainwater
 → Ongoing deterioration mechanisms with severe damage to both, concrete and reinforcement
 – Corrosion
 – Spalling
 – ...

![Cathedral images]
RISKS ASSOCIATED WITH SCANTILY PROVEN TECHNOLOGY

− Less than 100 years after reconstruction, the cathedral was to be closed to the public again and was propped ...

→ Detailed assessment showed
 − Impossibility to detain deterioration mechanisms
 − Technical difficulties and uncertainties entailed in repairing roof

→ Recommendation to demolish and rebuild the roof maintaining the rest of the temple

WORLD HERITAGE SITE

− Authorities wish to save existing main dome → Assessment

− For this purpose, durability requirements are reduced
 − Service period for normal building structures, not for monumental buildings

→ Future techniques might be suitable to fully detain deterioration mechanisms
GEOMETRY
- **Global system**
- **Structural members of the spherical dome**
 - 8 arches
 - Shells
 - Tension ring

STRUCTURAL BEHAVIOUR
- No significant seismic actions
- Distributed loads produce mainly membrane forces
- Thrust is equilibrated by tension ring forces
- Mainly vertical loads are transmitted to the robust cylindrical “drum”
- Assessment focuses on the dome
PRIOR INFORMATION
- Previous assessment of the existing building, particularly the lower roof
- Available information about
 - Material properties
 - Cross sections of main elements
 - Deterioration mechanisms

Prior information for the main dome

DATA ACQUISITION PROGRAM
- Geometry
 - Overall system dimensions
 - Cross sections of structural and ornamental elements
- Self weight and permanent actions
- Material properties
- Qualitative and quantitative determination of damage
 - Cracks
 - Spalling
 - Carbonation and chloride ingress
 - Corrosion velocity and cross section loss
 - Material deterioration such as crystallization of salts, efflorescence, humidity
 - Previous interventions
CROSS SECTIONS
– Parameters for different variables derived from a minimum of 4 measurements

CROSS SECTIONS
– Equivalent cross sections for structural analysis

Updated models
SELF WEIGHT AND PERMANENT ACTIONS

- For each layer, \(j \), establishment of
 - Thickness, \(h_j \)
 - Density of material, \(\rho_j \)

- Mean values and coefficients of variation for self weight and permanent actions

- Updated partial factors, for example for self weight

\[
\gamma_{Rc, act,N} = 1 - \alpha_{Rc} \cdot \beta \cdot \sqrt{V^2_{Rc, act} + V^2_{h, act}} = 1,11
\]

\[
\gamma_{Sd,N, act,N} = \gamma_{Sd,N,N} = e^{-\alpha_{Sd,N} \beta V_{Sd,N}} = 1,06
\]

MATERIAL PROPERTIES FOR REINFORCING STEEL

- Manufacturing of specimens
- Execution of tensile tests
MATERIAL PROPERTIES FOR REINFORCING STEEL
- Evaluation of test results and combination of information

- Updated parameters: LN; \(\mu_{\text{fys,act}}; \sigma_{\text{fys,act}} \)
- Updated characteristic values and partial factor
 - \(\phi < 10 \text{ mm} \): \(f_{\text{ys,k,act}} = 304 \text{ N/mm}^2 \) \(\gamma_{\text{s,act}} = 1.04 \) (Definition \(\gamma_s \neq y_{s,EC-2} \))
 - \(\phi > 10 \text{ mm} \): \(f_{\text{ys,k,act}} = 250 \text{ N/mm}^2 \)

MATERIAL PROPERTIES FOR CONCRETE
- Manufacturing of specimens
- Execution of compression tests
MATERIAL PROPERTIES FOR CONCRETE

– Evaluation of test results
– Updated parameters
 – Compressive strength: $LN; \mu_{c,act}; \sigma_{c,act}$
 – Modulus of elasticity: $\mu_{Ec,act}; \sigma_{Ec,act}$
– Updated characteristic values and partial factor
 – Arches: $f_{ck,act} = 6.8 \text{ N/mm}^2$
 – Shells: $f_{ck,act} = 3.1 \text{ N/mm}^2$
 – “Drum”: $f_{ck,act} = 4.9 \text{ N/mm}^2$
 $\gamma_{c,act,\delta} = 1.2$
 (Definition $\gamma_c \neq \gamma_{c,EC-2}$)

REINFORCEMENT CORROSION

– Corrosion rate measurements require careful interpretation
– Mean velocity to be estimated from remaining cross sections

$\int \frac{da}{dt} [\mu m/\text{year}] dt \rightarrow$ Mean velocity $a [\mu m]$

T_d T_i T_i+1 Winter t [years]

T_d T_i T_i+1

Extrapolation for future service period: $A_{s,corr}$
SHELLS AS AN EXAMPLE

– Relevant design situation for structural safety
 – Permanent actions and influences
 Self weight structural elements
 Self weight ornamental elements
 Corrosion
 – Leading variable action
 Wind
 – Accompanying variable action
 Temperature increase

→ Non linear FE analysis

SHELLS AS AN EXAMPLE

– Updated design action effects
 \[N_{Ed,\text{max},\text{act}} = 77 \text{ kN/m (} \text{+ compression)} \]

– Updated design resistance at the end of future service period
 \[N_{Rd,\text{act}} = 219 \text{ kN/m} \]

– Verification
 \[N_{Ed,\text{max},\text{act}} < N_{Rd,\text{act}} \]
RECOMMENDATION

– Structural reliability can be verified, but
 – Severe damage to concrete and reinforcement
 – Impossibility to detain deterioration mechanisms
 – Technical difficulties and uncertainties entailed in repairing dome

→ Demolition and reconstruction of the roof is advisable
TREND IN MODERN BRIDGE BUILDING
– Deployment of automated solutions to shorten construction times and lower costs
– Standardised equipment is employed, designed to be reused
– Special equipment is increasingly sophisticated

COMPETITIVE BRIDGE ERECTION TECHNIQUES AND RISKS
– Derailment of overhead gantry for erection of precast bridge girders

– Consequences
 – No damage to persons
 – Economic loss
FORENSIC ENGINEERING
– Experimental, analytical and numerical studies

– Interesting results and conclusions
– But: lack of transparency
→ Case with closed trial to illustrate vulnerability of bridge erection techniques

LAYOUT
– Construction of Mediterranean Highway A7 at Almuñécar
– Two parallel bridges required, curved in plan view: R 941 m
– Total length: 563,5 m
– Superstructure constituted by prestressed concrete box girders with 11,8 m wide decks, continuous over 10 spans
 – End spans of 51,75 m
 – 8 inner spans of 57,5 m
– Two midspans over the river supported by concrete arch
MOVABLE SCAFFOLDING SYSTEM

- MSS used to build the bridge superstructure
- Formwork supported by two main parallel truss girders, spaced at 9.5 m

MSS MEMBERS

- Each main girder consists of three parts
 - Rear: 2 trusses
 - Centre: 4 trusses
 - Front: 2 trusses

- Centre is bolted to front and rear by connection frames
MSS MEMBERS

- Main girders connected by four transverse bracing girders and a double-T beam
- Bracing girders fitted with sliding devices to clear piers
- Supports for main girders fitted with sliding bearings and hydraulic jacks for longitudinal and transverse movements

PROCEDURE

- Casting of concrete for one span, e.g. span 6
- Stages for MSS launching
 - Folding back of formwork
 - Disconnection of rear part of main girders from deck
 - Transverse movement for alignment of MSS with curved bridge
 - Opening of front transverse bracing girder to clear the pier P6
 - Longitudinal launching
 - Upon arrival at the pier P7, lifting of launching nose by truck crane

The accident

LAUNCHING OF THE MSS AFTER CASTING OF SPAN 6
– Launching nose lifted by truck crane at pier P7
– After launch of 2 m, power supply outage in right main girder
 → Operation stopped
– Collapse after a few moments
 – Initiation at the left main girder according to eyewitnesses
 – Right girder dragged down due to transverse bracings

CONSEQUENCES
– 6 persons killed and several injured
– Delay in construction and economic loss
– Loss of public confidence
The accident

HOW COULD THIS HAPPEN?
- Only self-weight during launching
- No problems during previous launching stages over equal spans

→ Examining magistrate asked for report with dual purpose
 - Establishment of mechanism and causes of the failure
 - Assessment of structural reliability: in spite of the collapse, auxiliary structure might have reached reliability level

Evaluation procedure

REMINDER
- Major difference between assessment and design: information available
- In the assessment of existing structures, many uncertainties may be reduced, also in the case of collapsed structures
- Probabilistic methods are most accurate to take into account site-specific data

→ Explicit risk analysis is applied to investigate the collapse
RISK ANALYSIS IN TWO STAGES

- Qualitative analysis to identify hazards and scenarios
- Quantitative analysis to establish likelihood of scenarios

Evaluation procedure

1. Identify potential hazards
2. Planning data acquisition
3. Reduce uncertainties
 - Inspections – Tests – Analysis
4. Identify relevant hazards
5. Establish hazard scenarios
 - Logic combination of hazards
6. Evaluate scenarios i, j, k, …
 - Probability analysis
7. Compare probabilities and interpret results
 - \(P_{i} < P_{j} < P_{k} < \ldots \)

Hazard identification

DIFFERENT CIRCUMSTANCES COMPARED TO PREVIOUS SPANS

- Nominally identical construction and launching procedure
- But, there are two main differences
 - Bridge geometry at pier P6, resting on the arch, called for ancillary support structure
 - Power supply outage-induced differential travel in left and right main girders
Hazard identification

POTENTIAL HAZARDS
- Potential hazards related to actions, influences, resistance
- Some immediately ruled out as possible origin of accident
 - Settlement
 - Seismic loads
 - Wind
 - Force applied by truck crane: no connection at time of accident

→ Investigative efforts focused on remaining potential hazards

PERMANENT LOADS
- Nominally, formwork partially folded back to clear pier P6
- In reality, formwork completely folded back prior to accident

→ Increase in intensity of action effects
Hazard identification

ACTION EFFECTS DUE TO IMPOSED DEFORMATIONS

– Difference between left and right main girder travel: 0.18 m
– Deviations in MSS support elevations or main girder precamber

DEVIATIONS FROM DESIGN RESISTANCE VALUES

– Deviations from construction tolerances
 – In critical structural members
 – In highly stressed joints, e.g. welds in connection frame

– Effects of load inversion and dynamic actions during launching and casting cycles
TRIGGERING ELEMENT
– Triggering element according to inspections, tests, analysis
→ Joint frame on left girder – right bottom chord of rear module

PRIMARY CAUSE
– Primary cause of joint failure could not be unequivocally established
 – More likely: loosening of one or several bolt nuts at the critical joint
 – Less likely: resistance loss in welds due to accumulation of plastic deformations
→ Hazard scenarios for quantitative analysis
IDENTIFICATION OF RELEVANT HAZARD SCENARIOS

- **Leading influence**
 - Loosening of at least one bolt nut at the critical joint and/or
 - Failure of welds at the critical joint

- **Accompanying actions**
 - Structure self-weight
 - Permanent loads given the actual position of formwork
 - 0.18 m differential travel between left and right main girders

- **Accompanying influences**
 - Nominal geometry of the MSS including precamber
 - Actual MSS support elevations
 - Deviations from construction tolerances and design resistance

THE PROBLEM R – E

- Failure of critical joint induces system failure: series system

⇒ Assess $P_{f,\text{joint}}$ associated with relevant hazard scenarios by using updated parameters for load and resistance variables
FAILURE PROBABILITIES

- Assuming a loose upper right bolt at the critical joint
 \[P_{f,\text{int,bolt}} = 0.06 \gg P_{f,\text{adm}} \]
- After weld failure at intermediate stiffener
 \[P_{f,\text{int,stiff}} = 0.30 \gg P_{f,\text{adm}} \]
 \(\Rightarrow \) Unstable equilibrium at the critical joint

FAILURE MECHANISM

- Results from analysis are compatible with inspections, tests and eyewitness accounts
- Most likely failure mechanism
 - Load inversion and dynamic effects during previous construction
 - Loosening of one or several bolt nuts at critical joint
 - Intra-joint stress redistribution
 - Stress concentration in certain welds
 - Failure of highly stressed welds
 - Stress redistribution and failure of other components
 - Joint failure
 - Collapse
CONCLUSIONS FROM THE FORENSIC ANALYSIS

- MSS collapse is associated with unorthodox detailing
 - Complex load transfer mechanisms
 - Lack of stress redistribution capacity
 - Underestimation of consequences of variable load cycles

→ Use of sophisticated construction equipment entails risk

- Systematic qualitative risk analysis at the design stage might have contributed to identify relevant hazards

→ Identified hazards may be mitigated adopting measures

ON THE ASSESSMENT OF SOUND, DETERIORATING AND COLLAPSED STRUCTURES

- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- Analysis of the deteriorating main dome over La Laguna cathedral
- Collapse of the River Verde viaduct scaffolding system

→ Final remarks
FINAL REMARKS

– In the assessment of existing structures, many uncertainties may be reduced, also in the case of collapsed structures
– Probabilistic methods are most accurate to take into account site-specific data
– Such methods are not fit for use in daily practice
– Rational decision making should be possible by using a partial factor format for assessment

On the assessment of sound, deteriorating and collapsed structures

FINAL REMARKS

– Tools have been developed to accommodate site-specific data by updating characteristic values and partial factors
– Further efforts are needed to extend these tools to the assessment of deteriorating structures
FINAL REMARKS

– Partial factor method does not always lead to unequivocal conclusions
– In such cases, explicit risk analysis is a powerful decision making tool