

Affidabilità strutturale

Pietro Croce Dipartimento di Ingegneria Civile e Industriale

Università di Pisa

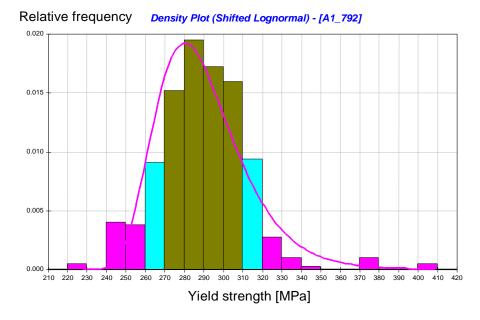
Leonardo da Vinci Assessment of existing structures Project number: CZ/11/LLP-LdV/TOI/134005

EN 1990:

Reliability

 ability of a structure to fulfil all required functions during a specified period of time under given conditions

Failure probability P_f


most important measure of structural reliability

Limit State Approach

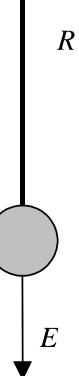
 Limit states - states beyond which the structure no longer fulfils the relevant design criteria

- Ultimate limit states
 - loss of equilibrium of a structure as a rigid body
 - rupture, collapse, failure
 - fatigue failure
- Serviceability limit states
 - functional ability of a structure or its part
 - users comfort
 - appearance

Uncertainties

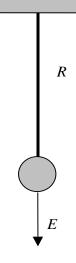
- randomness natural variability
- statistical uncertainties lack of data
- model uncertainties simplified models
- vagueness imprecision in definitions
- gross errors human factors
- ignorance lack of knowledge

EXAMPLE

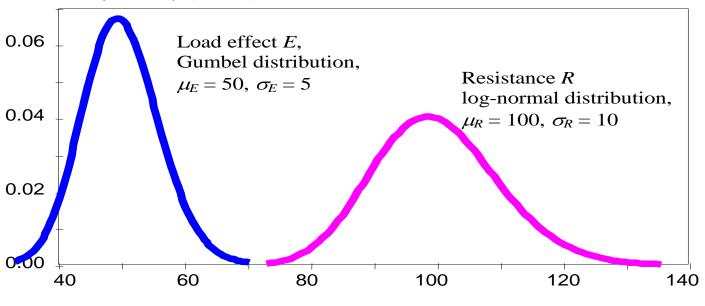

Resistance: $R = \pi d^2 f_v / 4$

Load effect: $E = V\rho$

Failure if E>R or: $V\rho > \pi d^2 f_y / 4$


Limit state: $V\rho = \pi d^2 f_y^2 / 4$

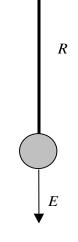
Limit state function: $Z = R-E = \pi d^2 f_y / 4 - V\rho$

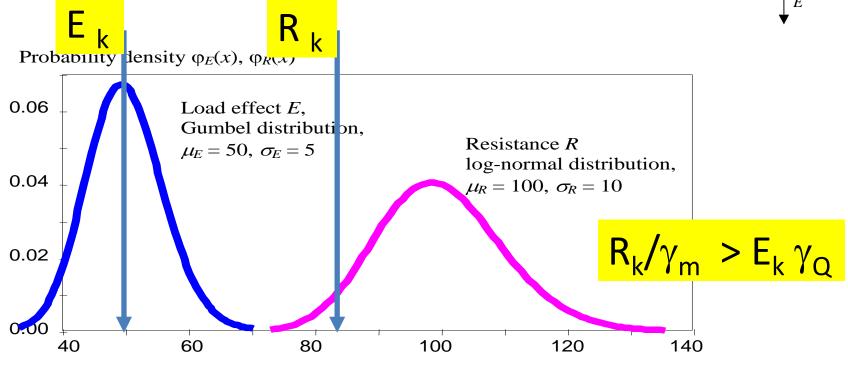


Statistical models

		distribution	mean	sd
R	resistance	Lognormal	100	10
E	load effect	Gumbel	50	5

Probability density $\varphi_E(x)$, $\varphi_R(x)$

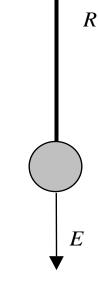



Random variable X

Partial factor approach

		distribution	mean	sd
R	resistance	Lognormal	100	10
E	load effect	Gumbel	50	5

Random variable X



Probabilistic approach

$$Z = R - E$$

$$P_{f} = P(Z < 0) = \iint_{Z(X)<0} \varphi_{R}(r)\varphi_{E}(e)drde$$

Techniques:

Numerical integration (NI)

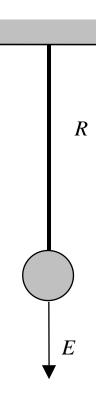
Monte Carlo (MC)

First order Second moment method (FOSM)

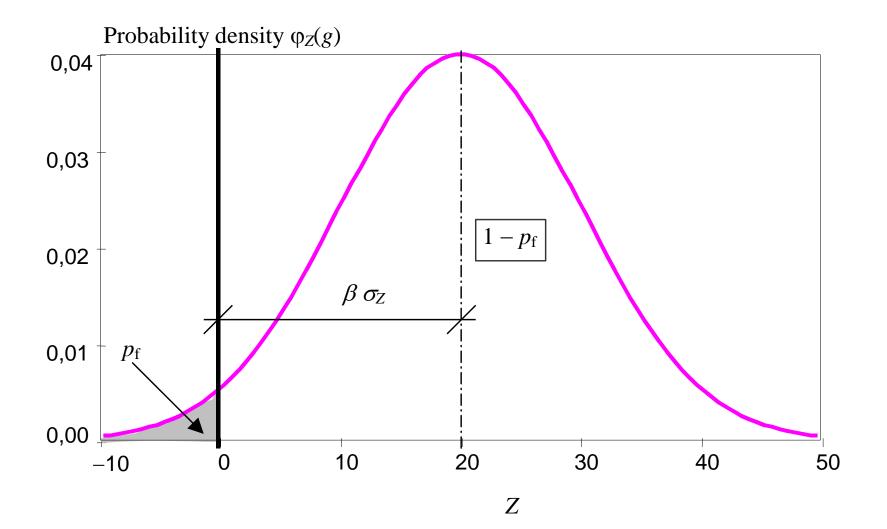
Third moment method (accounting for skewness)

First Order Reliability Methods (FORM)

First Order Second Moment method


$$Z = R - E$$

$$\mu_Z = \mu_R - \mu_E = 100 - 50 = 50$$


$$\sigma_Z^2 = \sigma_R^2 + \sigma_E^2 = 14^2$$

$$\beta = \mu_Z / \sigma_Z = 3.54$$

$$P_{\rm f} = P(Z < 0) = \Phi_{Z}(0) = 0.0002$$

$$\beta = \mu_Z / \sigma_Z = 3.54$$
 $P_f = P(Z < 0) = \Phi_Z(0) = 0.0002$

Reliability index

Probability of Failure = $\Phi(-\beta) \approx 10^{-\beta}$

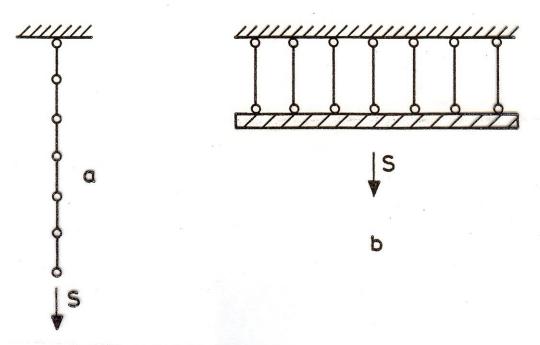
•		2.3				
$P(F)=\Phi(-\beta)$	10-1	10-2	10 ⁻³	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶

Relation Partial factors and beta-level:

$$\gamma = \exp{\{\alpha \beta V - kV\}} \approx 1 + \alpha \beta V$$

$$\alpha = 0.7-0.8$$

 $\beta = 3.3 - 3.8 - 4.3$ (life time, Annex B)


k = 1.64 (resistance)

k = 0.0 (loads)

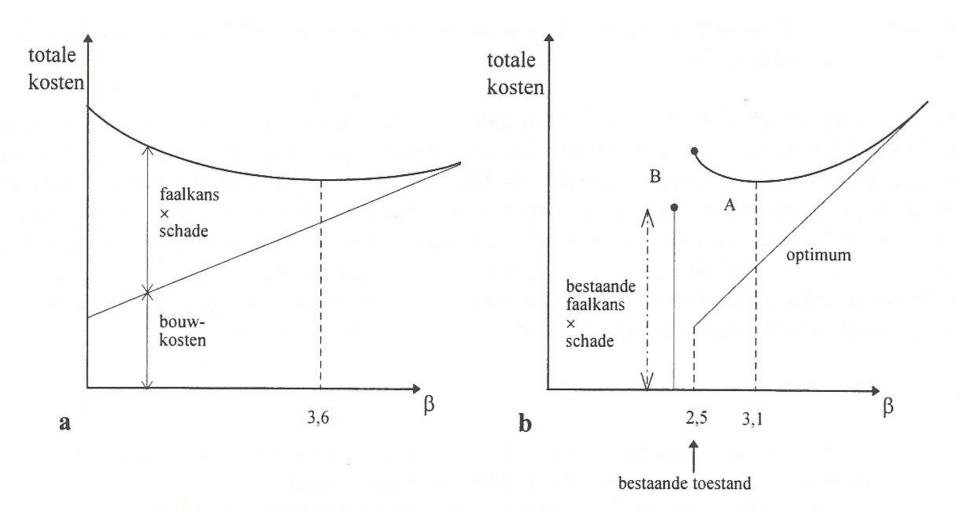
V = coefficient of variation

Extensions

- load fluctuations
- systems
- degradation
- inspection
- risk analysis
- target reliabilities

Target levels Reliablity

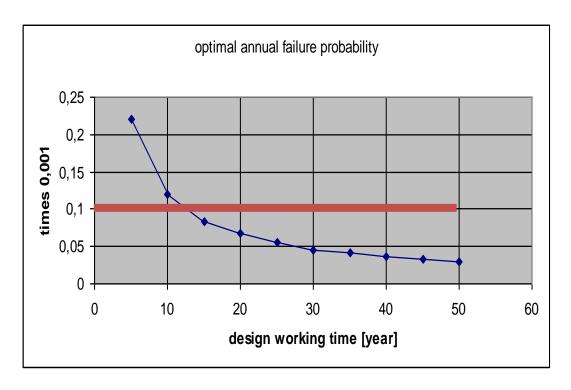
Eurocode EN 1990, Annex B


Consequences for	Reliability index β		Examples of buildings and
loss of human life,	$\beta_{\rm a}$ for	$\beta_{\rm d}$ for	civil engineering works
economical, social	$T_{\rm a}=1~{ m yr}$	$T_{\rm d}$ = 50 yr	
and environmental			
consequences			
High	5,2	4,3	Important bridges, public
			buildings
Medium	4,7	3,8	Residential and office
			buildings
Low	4,2	3,3	Agricultural buildings,
			greenhouses
	loss of human life, economical, social and environmental consequences High Medium	loss of human life, economical, social and environmental consequences β_a for $T_a=1$ yrHigh5,2Medium4,7	loss of human life, economical, social and environmental consequences High β_a for $T_a = 1$ yr $T_a = 1$ yr $T_d = 50$ yr

$$\gamma = \exp[(\alpha \beta - k)V] \sim 1 + \alpha \beta V$$

JCSS TARGET RELIABILITIES β for a one year reference period

	Consequences of failure ⇒						
Cost to increase safety	Minor	Moderate	Large				
Large	β=3.1 (p _F ≈10 ⁻³)	β =3.3 (p_F ≈ 5 10 ⁻⁴)	β =3.7 (p_F ≈ 10 ⁻⁴)				
Normal	β=3.7 (p _F ≈10 ⁻⁴)	β=4.2 (p _F ≈ 10 ⁻⁵)	β=4.4 (p _F ≈ 5 10 ⁻⁶)				
Small	β=4.2 (p _F ≈10 ⁻⁵)	β =4.4 ($p_F \approx 5 \ 10^{-5}$)	β =4.7 (p _F \approx 10 ⁻⁶)				


Cost optimisation / design versus assessment

$$P_F = 10^{-\beta}$$

Human life safety

- Include value for human life in D
- Still reasons for IR and SR
- Example: $p < 10^{-4}$ / year

Existing Structures (NEN 8700)

Reliability index in case of assessment

Minimum

$$\beta < \beta_{\text{new}} - 1.0$$

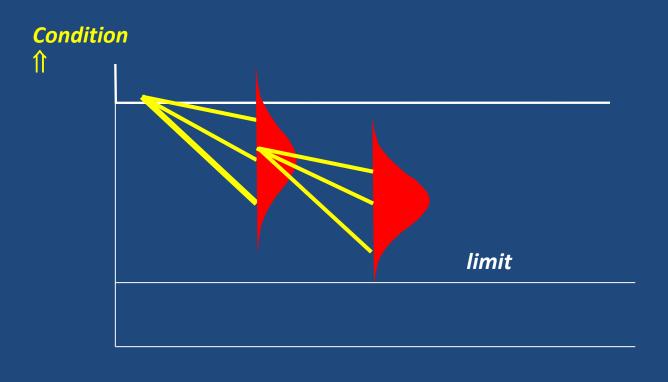
Human safety:

$$\beta > 3.6 - 0.8 \log T$$

Example NEN 8700 (Netherlands)

Minimum values for the reliability index β with a minimum reference period

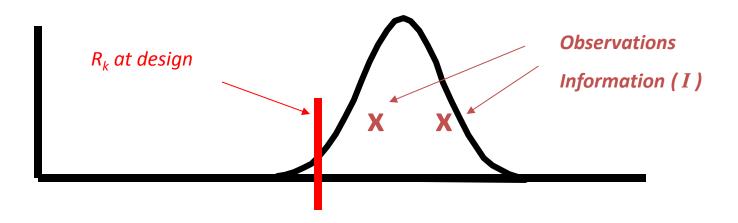
Consequence	Minimum	β-NEW		β -EXISTING	
class	reference period				
	for existing building				
		wn	wd	wn	wd
0	1 year	3.3	2,3	1.8	0.8
1	15 years	3.3	2,3	1.8 ^a	1.1 ^a
2	15 years	3.8	2.8	2.5 ^a	2.5 ^a
3	15 years	4.3	3.3	3.3°	3.3 ^a


Class 0: As class 1, but no human safety involved

wn = wind not dominant

wd = wind dominant

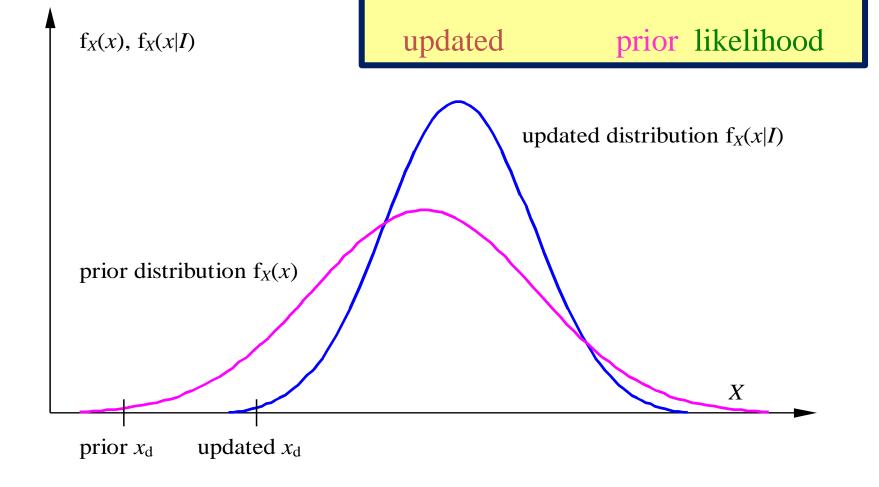
(a) = in this case is the minimum limit for personal safety normative


Inspection en monitoring

Time

Updating

1) Updating distributions (eg concrete strength)



2) Updating failure probability P{F | I }
Example: I = {crack = 0.6 mm}

Updating distributions

P(x|I) = P(x) P(I|x) / P(I)

$$f_X(x|I) = C f_X(x) P(I|x)$$

Formal Updating formulas

$$f_{Q}''(q/\hat{x}) = C f_{Q}'(q) L(|\hat{x}|q)$$

$$f_X^U(x) = \int_{-\infty}^{\infty} f_X(x|q) f_Q^{"}(q/\hat{x}) dq$$

Formal Updating formulas

$$f_{Q}''(q/\hat{x}) = C f_{Q}'(q) L(|\hat{x}|q)$$

$$f_X^U(x) = \int_{-\infty}^{\infty} f_X(x|q) f_Q^{"}(q/\hat{x}) dq$$

Ask the expert!

Example: Resistance with unknown mean m_R and known stand. Dev. s_R =17,5

Assume we have 3 observations with mean $m_m = 350$ Then m_R has $s_m = 17,5/\sqrt{3} = 10$. If the load is to 304 then:

$$m_Z$$
= 350-304=46
 $s_Z = \sqrt{(17,5^2 + 10^2)} = 20,2$
 β =2,27
 P_f =0,0116

Now we have one extra observation equal to 350. In that case the estimate of the mean m_m does not change. The standard deviation of the mean changes to $17.5/\sqrt{4} = 8.8$

$$m_Z$$
= 350-304=46,
 $s_Z = \sqrt{(17,5^2 + 8,8^2)} = 19,6,$
 β =2,35
 P_f =0,0095

Summary Reliability aspects

- Uncertainties exist
- Probability Theory may be helpful
- ☐ Reliability targets depends on consequences of failure
- ☐ Reliability targets depend on costs of improving
- ☐ Existing structures may have a lower target reliability
- ☐ Reliability may be updated using inspection results
- ☐ There is a relation partial factor reliability index