

Outline

- Observed damages in past earthquakes
- Turkish Earthquake Code-2007
- Seismic Evaluation of a Typical School Building
- Field Assessment
- Office Work
- Discussion of Results
- Retrofit Stragies/Examples

June 06, 2013

Destructive Earthquakes in Turkey tude (N) 13.03.1992 M_s = 6.8 3 850 39.68 39.56 01.10.1995 M_e = 5.9 4 90 38.1 30.02 7.06.1998 M_s = 5.9 36.85 35.55 4 00 50 000 or 100 17.08.1999 M_s = 7.4 15 00 32 000 29.91 12.11.1999 M_w = 7.2 4 948 40.7 31.21 15 389 03.02.2002 M_= 6.5 325 4 401 38.4 31.30 1.05.2003 M_w = 6.4 521 38.94 40.51

General Observations

- Mid-rise RC buildings with low technology engineered residential construction have been responsible for considerable life and property losses during seismic events
- Structural damages were mostly due to repetition of well known mistakes of the past in the design and construction of reinforced concrete buildings
- Damaged buildings generally had irregular structural framing, poor detailing, and no shear walls
- Turkey has a modern seismic code that is compatible with the codes in other seismic countries of the world

June 06, 20

General Observations (Cont'd)

- Altering the member sizes from what is foreseen in the design drawings
- Poor detailing which do not comply with the design drawings
- Inferior material quality and improper mix-design
- Changes in structural system by adding/removing components
- Reducing quantity of steel from what is required and shown in the design
- Poor construction practice

June 06, 20

Turkish Earthquake Code-2007

- Following 1999 Kocaeli Earthquake, many strengthening and retrofit of damaged buildings are carried out without any fundamental document.
- TEC-2007 includes a chapter for performance evaluation and seismic retrofit of existing structures adapted from FEMA-356.

June 06, 201

Seismic Retrofit in Turkey- Current Stage

- Public Buildings: Hospitals, School and other public buildings
- Kamu Binaları: Hastaneler, okullar ve diğer kamu binaları
- Urban development –Urban transformation law in order to minimize potential earthquake losses.
- Kentsel Dönüşüm --Riskli Binalar Yönetmeliği

Evaluation of a Typical Public Building

- Seismic Evaluation Steps
 - > Building properties: geometry and element size
 - Material properties: concrete strength and steel properties, soil properties
 - RC element properties; amount of longitudinal and lateral reinforcement
 - Existing damage state
- Laboratory work to determine concrete strength and soil properties
- Modeling of building
 - > Performance assessment

June 06, 2013

June 06, 201

Tipik Bir Kamu Binasının Değerlendirilmesi

- Sismik Değerlendirme Aşamaları
 - ➤ Bina ve eleman geometrik özellikleri
 - Malzeme özellikleri: Beton dayanımı, donatı çeliğinin cinsi ve özellikleri ve zemin özellikleri
 - Betonarme eleman özellikleri; Eleman boyutları, boyuna ve enine donatı yerleşimi ve miktarı
 - Mevcut hasar durumu
- Beton dayanımı ve zemin özelliklerinin belirlenmesi için arazi çalışması ve labratuvar deneyleri
- Binanın modellemesi
 - > Performans değerlendirmesi

June 06, 201

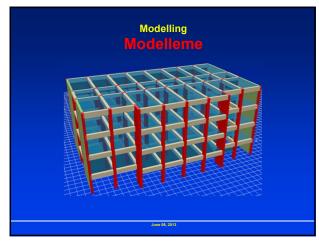
Evaluation of a Typical Public Building Tipik Bir Kamu Binasının Değerlendirilmes

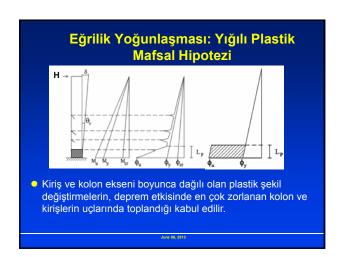
Seismic Performance Evaluation

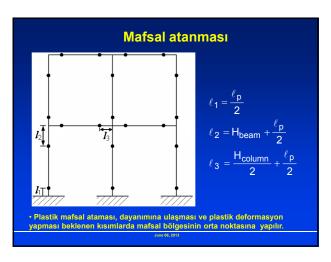
Sismik performans değerlendirmesi

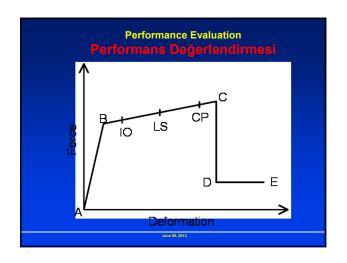
- Whether the buildings satisfy performance objectives?
 Binanin performans amaçlarını sağlayıp sağlamadığınır belirlenmesi
- Seismic retrofit and strengthening required, economical / not economical, demolish and reconstruct.
- Güçlendirme gerekli, ekonomik/ekonomik değil, yıkım ve yeniden yapım kararlarının verilmesi

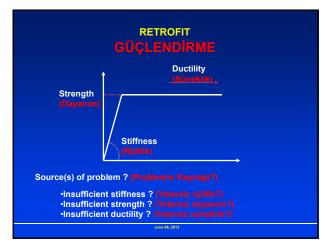
June 06, 2013

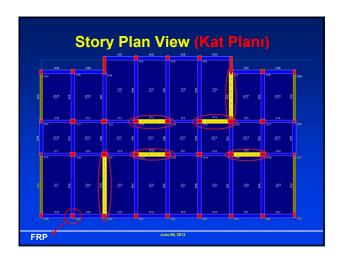












Performance Evaluation Performans Değerlendirmesi	
Performance Level	Performance Criteria
Immediate Occupancy (IO)	1. There shall not be any column or shear walls beyond IO level. 2. The ratio of beams in IO-LS region shall not exceed 10% in any story. 3. There shall not be any beams beyond LS. 4. Story drift ratio shall not exceed 0.8% in any story.
Life Safety (LS)	1.In any story, the shear carried by columns or shear walls in LS-CP region shall not exceed 20% of story shear. This ratio can be taken as 40% for roof story. 2.In any story, the shear carried by columns or shear walls yielded at both ends shall not exceed 30% of story shear. 3.The ratio of beams in LS-CP region shall not exceed 20% in any story. 4.Story drift ratio shall not exceed 2% in any story.
Collapse Prevention (CP)	In any story, the shear carried by columns or shear walls beyond OP region shall not exceed 20% of story shear. This ratio can be taken as 40% for roof story. In any story, the shear carried by columns or shear walls yielded at both ends shall not exceed 30% of story shear. 3.The ratio of beams beyond OP region shall not exceed 20% in any story. 4.Story drift ratio shall not exceed 3% in any story.

