

Tools developed

DEFAULT PROBABILISTIC MODELS COMPLYING WITH THE FOLLOWING REQUIREMENTS

- Representation of physical properties of the corresponding variable
- Consistency with *JCSS* models
- Representation of the state of uncertainty associated with code rules
- Representation of uncertainties by means of random variables, suitable for practical applications

 $X_i = Type\left(\mu_{X_i}; \sigma_{X_i}\right)$

PROCEDURE

3. Description of the updated distribution function by means of relevant parameters: Type; $\mu_{X,act}$; $\sigma_{X,act}$; $x_{k,act}$

4. Coefficient of variation for the relevant function of updated random variables, depending on the partial factor format for assessment

Assessment with site-specific models

EXAMPLE

- Verification of bending resistance of RC element
- Only f_{ys} has been updated
- Dominating resistance variable: F_{ys}
- Verification of structural safety: $M_{Ed,act} \leq M_{Rd,act}$

$$\mathbf{M}_{\mathsf{Rd},\mathsf{act}} = \frac{1}{\gamma_{\mathsf{Rd},\mathsf{M}}} \left(\frac{\mathbf{A}_{\mathsf{s}} \cdot \mathbf{f}_{\mathsf{ys},\mathsf{k},\mathsf{act}}}{\gamma_{\mathsf{s},\mathsf{act},\delta}} \cdot \mathbf{d} - \mathbf{0.5} \left(\frac{\mathbf{A}_{\mathsf{s}} \cdot \mathbf{f}_{\mathsf{ys},\mathsf{k},\mathsf{act}}}{\gamma_{\mathsf{s},\mathsf{act},\delta}} \right)^2 \cdot \frac{\gamma_{\mathsf{c}}}{\eta_{\mathsf{c}} \cdot \mathbf{f}_{\mathsf{ck}}} \cdot \frac{1}{\mathsf{b}} \right)$$

SITE DATA COLLECTION

- Geometry and material properties can be updated

Performance of corroded elements

Context

SAN CRISTÓBAL DE LA LAGUNA

- Historic city located in Tenerife
- Typical urban structure developed in Latin America during colonisation
- Declared a UNESCO World Heritage Site in 1999

Context

CATHEDRAL

- Built over former church of *Nuestra Señora de los Remedios*
- Cathedral since 1818
- Declared in ruins in 1897 due to settlements induced damage
- → Except neo-classical facade, it was completely demolished

Context

CATHEDRAL

- Rebuilt between 1905 and 1913 in neo-gothic style according to engineering drawings by José Rodrigo Vallabriga
- Novel technology was used: reinforced concrete
 - Shorter construction time
 - Lower costs

Motivation

RISKS ASSOCIATED WITH SCANTILY PROVEN TECHNOLOGY

- Aggregates with inbuilt sulfates, chlorides, seashells, ...
- Concrete with high porosity and low resistivity
- High relative humidity and filtration of rainwater
- Ongoing deterioration mechanisms with severe damage to both, concrete and reinforcement
 - Corrosion
 - Spalling
 - ----

Motivation

Motivation

WORLD HERITAGE SITE

-

- Authorities wish to save the existing main dome
- For this purpose, durability requirements are reduced
 - Service period for normal building structures, not for monumental buildings
 - → Future techniques might be suitable to fully detain deterioration mechanisms

	Description
STR	UCTURAL BEHAVIOUR
—	No significant seismic actions
—	Distributed loads produce mainly membrane forces $ ightarrow lacksquare$ $ ightarrow$
—	Thrust is equilibrated by tension ring forces $\leftarrow \equiv \rightarrow$
>	Mainly vertical loads are transmitted to the robust cylindrical "drum"
\rightarrow	Assessment focuses on the dome

Information

PRIOR INFORMATION

- Previous assessment of the existing building, particularly the lower roof
- Available information about
 - Material properties
 - Cross sections of main elements
 - Deterioration mechanisms
- → Prior information for the main dome

Information

DATA ACQUISITION PROGRAM

- Geometry
 - Overall system dimensions
 - Cross sections of structural and ornamental elements
- Self weight and permanent actions
- Material properties
- Qualitative and quantitative determination of damage
 - Cracks
 - Spalling
 - Carbonation and chloride ingress
 - Corrosion velocity and cross section loss
 - Material deterioration such as crystallization of salts, efflorescence, humidity
 - Previous interventions

Updated models

CROSS SECTIONS

 Parameters for different variables derived from a minimum of 4 measurements

Updated modelsDATERIAL PROPERTIES FOR CONCRETE-Evaluation of test results-Updated parameters-Compressive strength: LN; $\mu_{fc,act}$; $\sigma_{fc,act}$; $f_{ck,act}$; $\gamma_{c,act}$ -Modulus of elasticity: $\mu_{Ec,act}$; $\sigma_{Ec,act}$ -Updated characteristic values-Arches:- $f_{ck,act} = 6,8$ N/mm²-Shells:-"Drum":- $f_{ck,act} = 4,9$ N/mm²

RECOMMENDATION

- Structural reliability can be verified, but
 - Severe damage to concrete and reinforcement
 - Impossibility to detain deterioration mechanisms
 - Technical difficulties and uncertainties entailed in repairing dome
- Demolition and reconstruction of the roof is advisable

Decision

