

Basic concepts and data updating, reliability aspects

Milan Holický Klokner Institute, Czech Technical University in Prague

Backgrounds: EN 1990, ISO 2394, ISO 13822, JCSS, RILEM

When assessment of existing structures?

- rehabilitation of an existing facility when new structural members are added to the existing load-carrying system;
- adequacy checking in order to establish whether the existing structure can resist loads associated with the anticipated change in use of the facility;
- repair of a structure deteriorated due to time dependent environmental effects, or which has suffered damage from accidental actions, for example, impact;
- doubts concerning actual reliability of the structure.

Assessment is in many aspects different from designing a new structure - ISO 13822

General aspects

The following aspects seem to be the most significant: - effect of construction, alterations, misuse;

- past performance, damage, deterioration, maintenance;
- actual actions, geometry and material property;
- reliability differentiation (consequences, cost of

safety measures, societal, political and culture aspects).

Two main principles

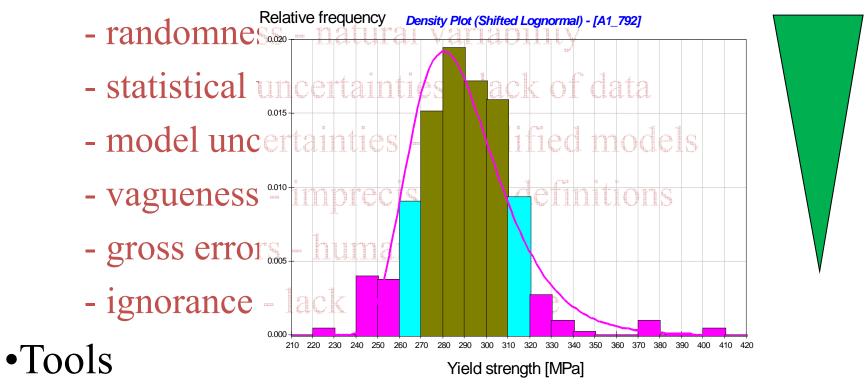
• Actual characteristics of structural material, action (permanent load), geometric data and structural behaviour should be considered.

• Currently valid codes should be considered (models for actions and resistances), codes valid in the period when the structure was designed should be used as guidance documents.

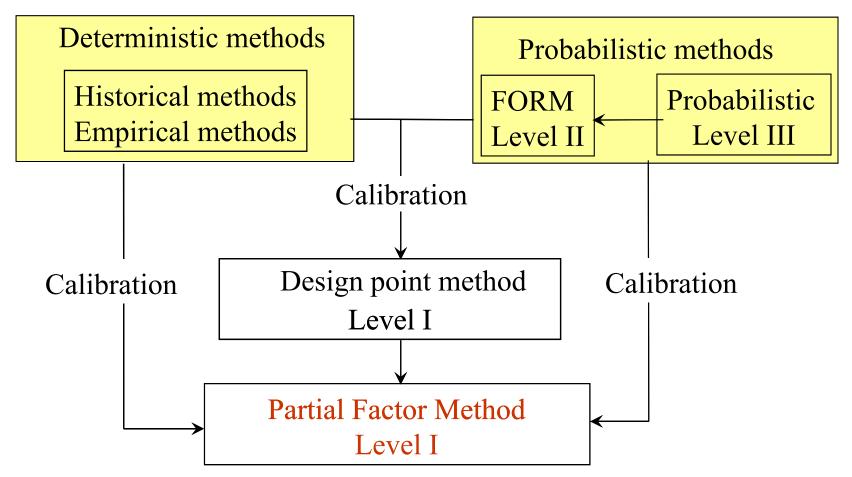
Main steps of assessment

Assessment is an iterative process consisting of:

- specification of the assessment objectives;
- scenarios related to structural conditions and actions;
- preliminary assessment including recommendations;
- detailed assessment including reliability verification;
- report including proposal for intervention;
- repetition of the sequence if necessary.


Limit State Approach

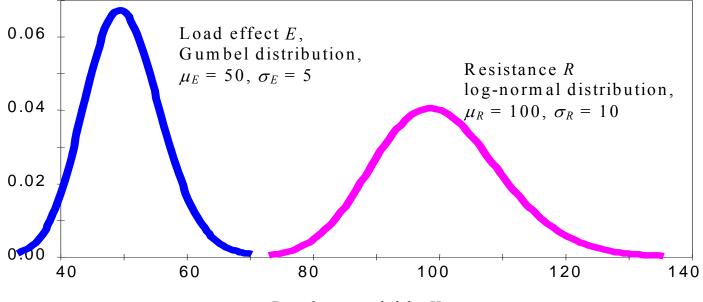
- Limit states states beyond which the structure no longer fulfils the relevant design criteria
- Ultimate limit states
 - loss of equilibrium of a structure as a rigid body
 - rupture, collapse, failure
 - fatigue failure
- Serviceability limit states
 - functional ability
 - users comfort
 - appearance


•Uncertainties (aleatoric and epistemic) Decription

theory of probability and statistics, fuzzy logic
reliability theory and risk engineering
Some uncertainties are difficult to quantify

7

Reliability Methods


Reliability measures: failure probability $p_{\rm f}$ and reliability index β

p_{f}	10-1	10-2	10-3	10-4	10 ⁻⁵	10-6	10-7	
β	1,3	2,3	3,1	3,7	4,2	4,7	5,2	8

Probabilistic models

		distribution	mean	sd
R	resistance	Lognormal	100	10
E	load effect	Gumbel	50	5

Probability density $\varphi_E(x)$, $\varphi_R(x)$

Random variable X

R

E

Fundamental case for normal distribution $E \leq R$ $G = R - E \qquad \mu_G = \mu_R - \mu_E, \ \sigma_G^2 = \sigma_R^2 + \sigma_E^2$ Transformation of G to standardized variable $U=(G-\mu_G)/\sigma_G$ For G = 0 the standardized variable $u_0 = (0 - \mu_G)/\sigma_G$ $\beta = -u_0 = \frac{\mu_G}{\sigma_G} = \frac{\mu_R - \mu_E}{(\sigma_P^2 + \sigma_E^2)^{1/2}}$ Reliability index : $\varphi_G(x)$ **Reliability** Failure probability Failure Prubab. $p_{\rm f} = \Phi(-\beta)$ 10

An example of the fundamental case

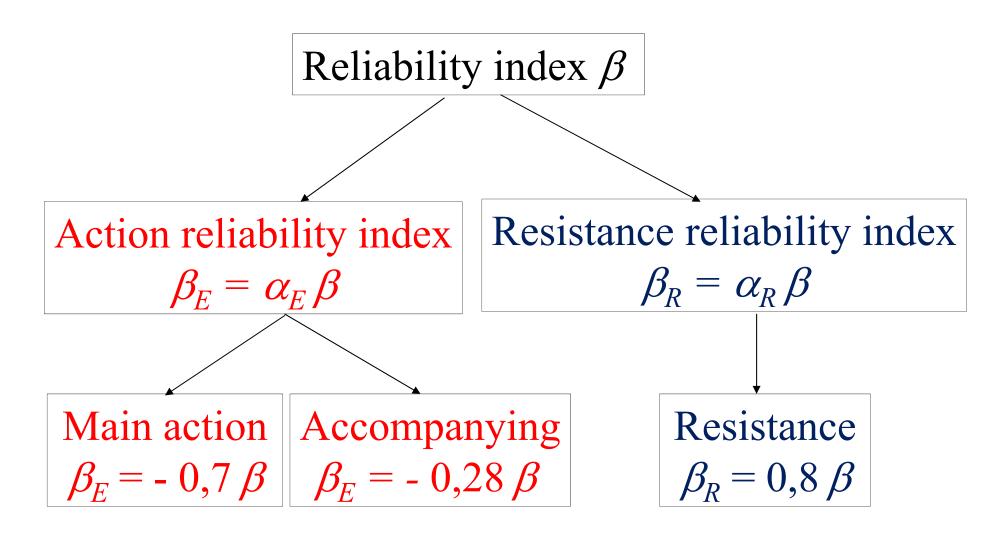
$$Z = R - E$$

$$\mu_{Z} = \mu_{R} - \mu_{E} = 100 - 50 = 50$$

$$\sigma_{Z}^{2} = \sigma_{R}^{2} + \sigma_{E}^{2} = 14^{2}$$

$$\beta = \mu_{Z} / \sigma_{Z} = 3.54$$

$$P_{f} = P(Z < 0) = \Phi_{Z}(0) = 0.0002$$

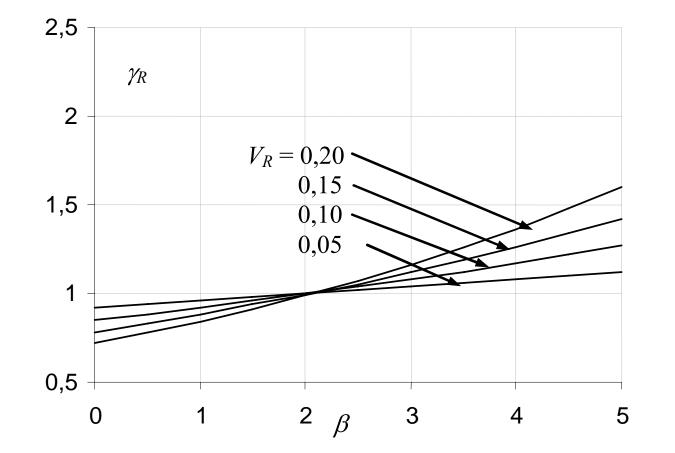

R

E

Indicative target reliabilities in ISO 13822

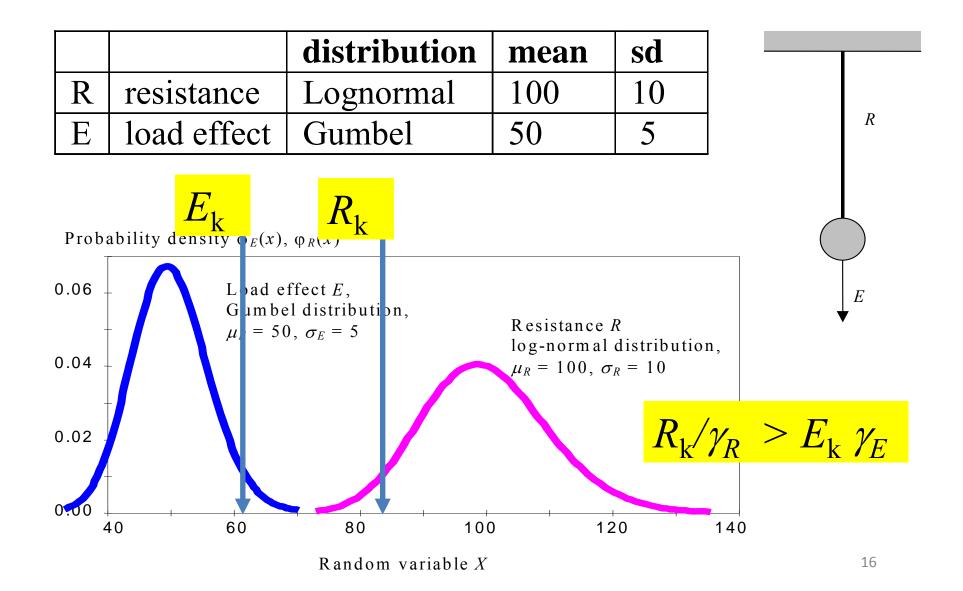
Limit states	Target reliability index, β	Reference period			
Serviceability					
Reversible	0,0	Intended remaining working life			
Irreversible	1,5	Intended remaining working life			
Fatigue					
inspectable	2,3	Intended remaining working life			
not inspectable	3,1	Intended remaining working life			
Ultimate					
very low consequences of failure	2,3	L _S years*			
low consequence of failure	3,1	L _s years*			
medium consequence of failure	3,8	L _S years*			
high consequence of failure	4,3	L _s years*			
* <i>L</i> _s is a minimum standard period for safety (e.g. 50 years)					

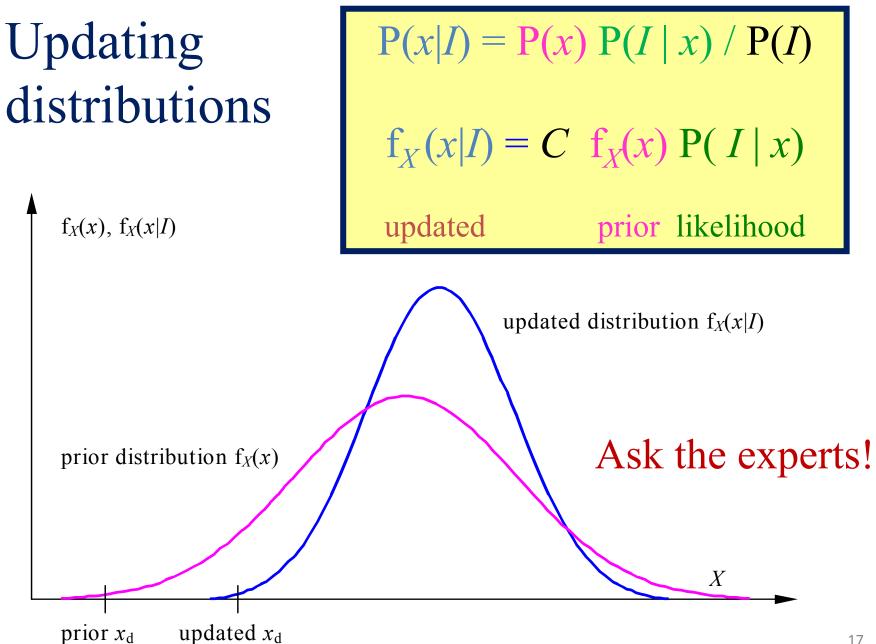
Eurocode concepts of partial factors


Partial factor of a resistance variable R $\gamma_R = R_k/R_d$ based on $\beta_R = 0.8 \times \beta$ Normal distribution

 $R_{\rm k} = \mu_R - 1,645 \times \sigma_R = \mu_R (1 - 1,645 \times V_R)$ $R_{\rm d}(\beta) = \mu_R - \alpha_R \times \beta \times \sigma_R = \mu_R - 0,8 \times \beta \times \sigma_R = \mu_R (1 - 0,8 \times \beta \times V_R)$ $\gamma_R(\beta) = (1 - 1,645 \times V_R) / (1 - 0,8 \times \beta \times V_R)$

Lognormal distribution


$$R_{\rm k} = \mu_R \times \exp(-1.645 \times V_R)$$
$$R_{\rm d}(\beta) = \mu_R \times \exp(-\alpha_R \times \beta \times V_R)$$
$$\gamma_R(\beta) = \exp(-1.645 \times V_R) / \exp(-\alpha_R \times \beta \times V_R)$$


Partial factor of a resistance *R* $\gamma_R(\beta) = \exp(-1.645 \times V_R) / \exp(-\alpha_R \times \beta \times V_R)$

Variation of γ_R with β for lognormal distribution of R_{IB}

An example of the partial factor approach

Concluding remarks

- **1.** Actual characteristics of structural materials, actions (permanent loads), and geometric data are decisive.
- 2. Currently valid codes should be applied for actions and resistances, previous codes may provide valuable information.
- **3. Uncertainties** in assessment of existing structures may be greater than in design of new structures.
- 4. **Probability theory and statistics** are useful tools.
- **5. Target reliability** may be decreased depending on failure consequences and optimization.
- **6. Relevant partial factors** can be modified considering the specified reliability index.
- 7. Updating of reliability using newly obtained data (experimental and inspection results) is often useful.

İlginiz için teşekkür ederiz

In some cases assessment of existing structures is very difficult The Charles Bridge in Prague – 660 years