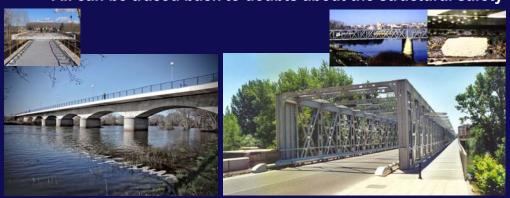


LEONARDO DA VINCI PROJECT CZ/11/LLP-LdV/TOI/134005 SEMINAR ON ASSESSMENT OF EXISTING STRUCTURES České Budějovice. 23-05-2013

ON THE ASSESSMENT OF SOUND, DETERIORATING AND COLLAPSED STRUCTURES

Peter Tanner. Carlos Lara. Ramon Hingorani. Miguel Prieto



Introduction

MOTIVATION

- The need to assess the reliability of an existing structure may arise from different causes
- All can be traced back to doubts about the structural safety

→ Reliability ok for future use ?

Introduction

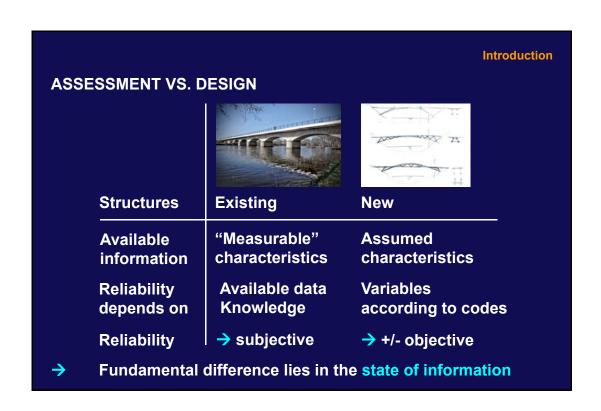
MOTIVATION

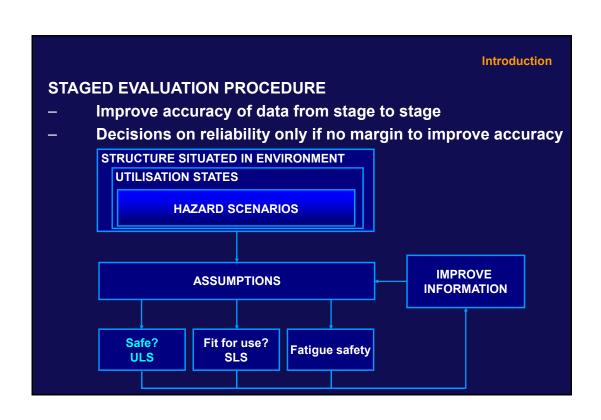
- Fundamental problem is to find an answer to the question:
 is the structure safe enough?
- Only two possible answers: yes or no
- Wrong decisions may imply significant consequences

Do nothing

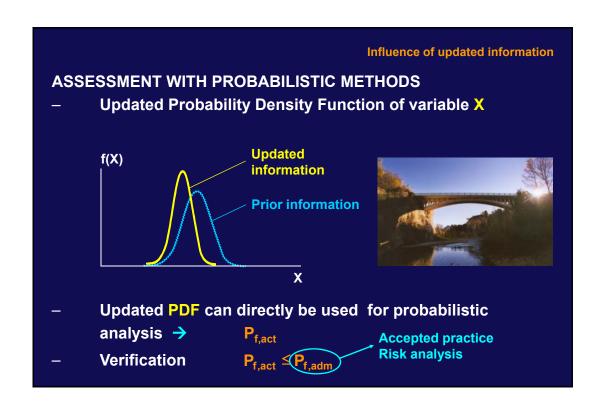

Over-reaction

Introduction


MORE DOUBTS ABOUT STRUCTURAL SAFETY


Derailment of overhead gantry for erection of precast bridge girders

- No problems during previous construction stages under identical conditions
- How could this happen?



ON THE ASSESSMENT OF SOUND, DETERIORATING AND COLLAPSED STRUCTURES

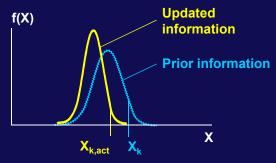
- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- Analysis of the deteriorating main dome over La Laguna cathedral
- Collapse of the River Verde Viaduct scaffolding system
- Final remarks

Influence of updated information

ASSESSMENT WITH PARTIAL FACTOR METHOD

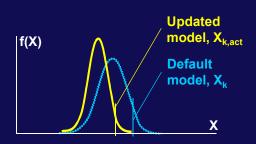
- Probabilistic methods are most accurate to take into account updated information
- But they are not fit for use in daily practice
- Partial factor method should be available for assessment

$$\gamma_{\text{E,act}} \cdot \mathsf{E}_{\text{k,act}} \le \frac{\mathsf{R}_{\text{k,act}}}{\gamma_{\text{R,act}}}$$



Influence of updated information **ASSESSMENT WITH PARTIAL FACTOR METHOD**

Updated characteristic value of X



- Updated partial factor γ_{X,act}
- $\gamma_{\mathsf{E},\mathsf{act}} \cdot \mathsf{E}_{\mathsf{k},\mathsf{act}} \leq$
- Can not be derived directly
- Link between probabilistic and partial factor methods: design point, the most probable failure point on LS surface

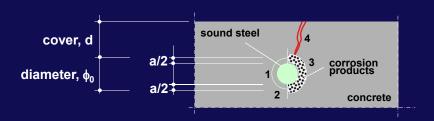
Work done for sound structures

DEVELOPMENT OF PRACTICAL TOOLS FOR THE ASSESSMENT

- Identification of representative failure modes and LSF
- Adoption of partial factor format for assessment
- Definition of reference period
- Deduction of default probabilistic models
- Establishment of required reliability
- Updating of characteristic values and partial factors

ON THE ASSESSMENT OF SOUND, DETERIORATING AND COLLAPSED STRUCTURES

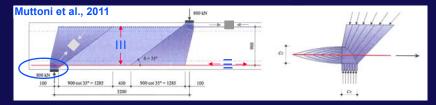
- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- Analysis of the deteriorating main dome over La Laguna cathedral
- Collapse of the River Verde Viaduct scaffolding system
- Final remarks



Performance of corroded elements

MAIN EFFECTS OF CORROSION OF REINFORCEMENT BARS

- 1. Decrease of bar cross-section
- 2. Decrease of ductility of steel (ε_{u} : reduction of 30 to 50%)
- 3. Bond deterioration
- 4. Cracking of concrete cover (due to corrosion products)



→ Corrosion may affect performance at ULS and SLS

Performance of corroded elements

ASSUMPTIONS

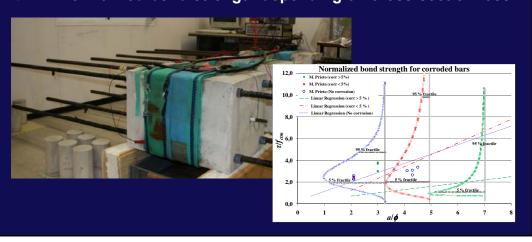
- Lower bound theorem of the theory of plasticity is valid
 A load system, based on a statically admissible stress field which nowhere violates the yield condition is a lower bound to the collapse load.
- Stress field models can be established

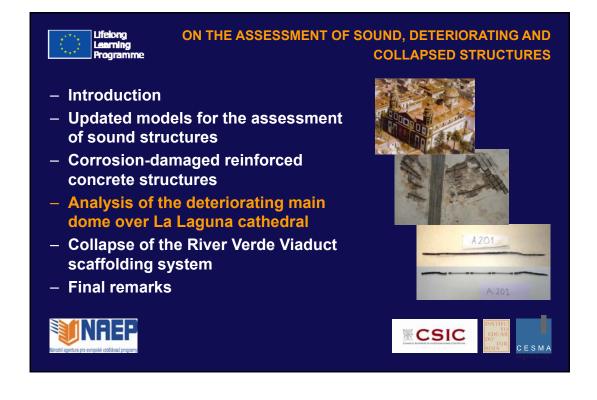
- Required information
 - Geometry, particularly remaining bar cross-sections
 - Material properties → ← ◆ ← = →
 - Bond strength

Performance of corroded elements

SITE DATA COLLECTION

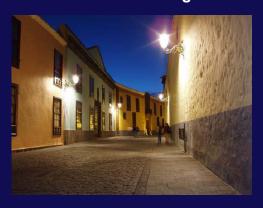
Geometry and material properties can be updated




Performance of corroded elements

BOND STRENGTH

- Pull-out tests on specimens with accelerated and natural corrosion
- Normalized bond strength depending on cross-section loss


SIMPLE MODELS FOR ESTIMATE OF PERFORMANCE OF CORRODED STRUCTURAL ELEMENTS - Example: bending resistance A - A Upper bound: active Lower bound: disregarded (spalling) A_s(t) = n $\frac{\pi (\phi_0 - a(t))^2}{4}$ Similar rules for other failure modes and SLS

Context

SAN CRISTÓBAL DE LA LAGUNA

- Historic city located in Tenerife
- Typical urban structure developed in Latin America during colonisation
- → Declared a UNESCO World Heritage Site in 1999

Context

CATHEDRAL

- Built over former church of Nuestra Señora de los Remedios
- Cathedral since 1818
- Declared in ruins in 1897 due to settlements induced damage
- → Except neo-classical facade, it was completely demolished

Context

CATHEDRAL

- Rebuilt between 1905 and 1913 in neo-gothic style according to engineering drawings by José Rodrigo Vallabriga
- Novel technology was used: reinforced concrete
 - Shorter construction time
 - Lower costs

Motivation

RISKS ASSOCIATED WITH SCANTILY PROVEN TECHNOLOGY

- Aggregates with inbuilt sulfates, chlorides, seashells, ...
- Concrete with high porosity and low resistivity
- High relative humidity and filtration of rainwater
- Ongoing deterioration mechanisms with severe damage to both, concrete and reinforcement
 - Corrosion
 - Spalling
 - ..

Motivation

RISKS ASSOCIATED WITH SCANTILY PROVEN TECHNOLOGY

- Less than 100 years after reconstruction, the cathedral was to be closed to the public again and was propped ...
- Detailed assessment showed
 - Impossibility to detain deterioration mechanisms
 - Technical difficulties and uncertainties entailed in repairing roof
- Recommendation to demolish and rebuild the roof maintaining the rest of the temple

Motivation

WORLD HERITAGE SITE

- Authorities wish to save the existing main dome
- For this purpose, durability requirements are reduced
 - Service period for normal building structures, not for monumental buildings
 - → Future techniques might be suitable to fully detain deterioration mechanisms

Description

GEOMETRY

Global system

- Structural members of the spherical dome
 - 8 arches
 - Shells
 - Tension ring

Description

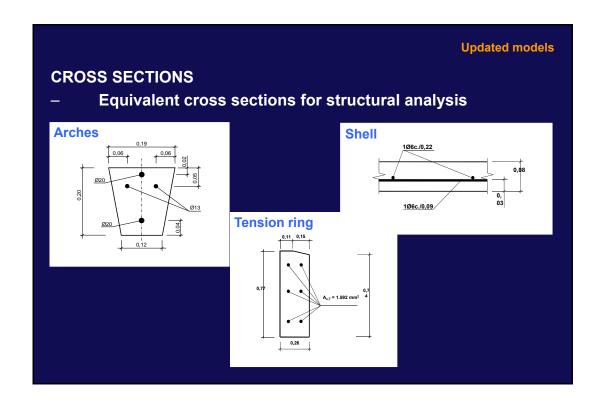
STRUCTURAL BEHAVIOUR

- No significant seismic actions
- Distributed loads produce mainly membrane forces → ←
- Thrust is equilibrated by tension ring forces ← ≡ →
- Mainly vertical loads are transmitted to the robust cylindrical "drum"
- Assessment focuses on the dome

Information

PRIOR INFORMATION

- Previous assessment of the existing building, particularly the lower roof
- **Available information about**
 - **Material properties**
 - **Cross sections of main elements**
 - **Deterioration mechanisms**
- Prior information for the main dome


Information

DATA ACQUISITION PROGRAM

- Geometry
 - **Overall system dimensions**
 - **Cross sections of structural and ornamental elements**
- Self weight and permanent actions
- **Material properties**
- Qualitative and quantitative determination of damage
 - Cracks
 - **Spalling**
 - **Carbonation and chloride ingress**
 - Corrosion velocity and cross section loss
 - Material deterioration such as crystallization of salts, efflorescence, humidity
 - **Previous interventions**

CROSS SECTIONS Parameters for different variables derived from a minimum of 4 measurements The property of the property of

Updated models

SELF WEIGHT AND PERMANENT ACTIONS

- For each layer, j, establishment of
 - Thickness, h_i
 - Density of material, ρ_i

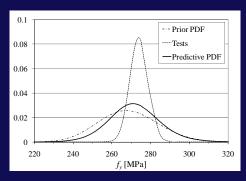
- Mean values and coefficients of variation for self weight and permanent actions
- → Updated partial factors, for example for self weight

$$\begin{split} \gamma_{g_c,act,v} &= 1 - \alpha_{g_c} \cdot \beta \cdot \sqrt{V_{\rho_c,act}^2 + V_{h_c,act}^2} = 1,11 \\ \gamma_{Sd,N,act,v} &= \gamma_{Sd,N,v} = e^{-\alpha_{\xi_E,N} \cdot \beta \cdot V_{\xi_E,N}} = 1,06 \end{split}$$

Updated models

MATERIAL PROPERTIES FOR REINFORCING STEEL

- Manufacture of specimens
- Execution of tensile tests



Updated models

MATERIAL PROPERTIES FOR REINFORCING STEEL

Evaluation of test results and combination of information

- Updated parameters: LN; $\mu_{fys,act}$; $\sigma_{fys,act}$; $f_{ys,k,act}$; $\gamma_{s,act}$
- Updated characteristic values

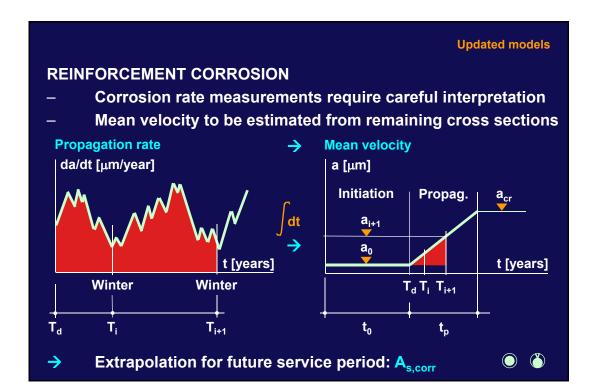
 $- \phi < 6 \text{ mm}: f_{ys,k,act} = 304 \text{ N/mm}^2$

 $- \phi > 6 \text{ mm}: f_{ys,k,act} = 262 \text{ N/mm}^2$

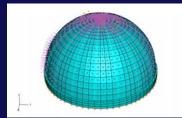
MATERIAL PROPERTIES FOR CONCRETE - Manufacture of specimens - Execution of compression tests Testigo 5645 T-102-A Galga 2 (eagu) (

Updated models

MATERIAL PROPERTIES FOR CONCRETE


- Evaluation of test results
- Updated parameters
 - Compressive strength: LN; $\mu_{fc,act}$; $\sigma_{fc,act}$; $f_{ck,act}$; $\gamma_{c,act}$
 - Modulus of elasticity: $\mu_{Ec,act}$; $\sigma_{Ec,act}$
- Updated characteristic values

 $\begin{array}{lll} - & \text{Arches:} & f_{ck,act} = 6.8 \text{ N/mm}^2 \\ - & \text{Shells:} & f_{ck,act} = 3.1 \text{ N/mm}^2 \\ - & \text{"Drum":} & f_{ck,act} = 4.9 \text{ N/mm}^2 \end{array}$



Structural analysis

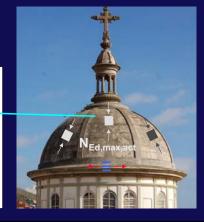
SHELLS AS AN EXAMPLE

- Relevant design situation for structural safety
 - Permanent actions and influences
 Self weight structural elements
 Self weight ornamental elements
 Corrosion
 - Leading variable action
 Wind
 - Accompanying variable action
 Temperature increase
- → Non linear FE analysis

Verification of structural safety

SHELLS AS AN EXAMPLE

Updated design action effects

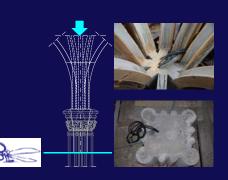

 $N_{Ed,max,act} = 77 \text{ kN/m}$ (+ compression)

Updated design resistance at the end of future service period

 $N_{Rd,act} = 219 \text{ kN/m}$

Verification

N_{Ed,max,act} < N_{Rd,act}



Decision

RECOMMENDATION

- Structural reliability can be verified, but
 - Severe damage to concrete and reinforcement
 - Impossibility to detain deterioration mechanisms
 - Technical difficulties and uncertainties entailed in repairing dome
- Demolition and reconstruction of the roof is advisable

ON THE ASSESSMENT OF SOUND, DETERIORATING AND COLLAPSED STRUCTURES

- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- Analysis of the deteriorating main dome over La Laguna cathedral
- Collapse of the River Verde Viaduct scaffolding system
- Final remarks

The bridge

LAYOUT

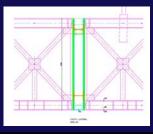
- Construction of Mediterranean Highway A7 at Almuñécar
- Two parallel bridges required, curved in plan view: R 941 m
- Total length: 563,5 m
- Superstructure constituted by prestressed concrete box girders with 11,8 m wide decks, continuous over 10 spans
 - End spans of 51,75 m
 - 8 inner spans of 57,5 m
- Two midspans over the river supported by concrete arch

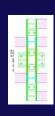
Construction

MOVABLE SCAFFOLDING SYSTEM

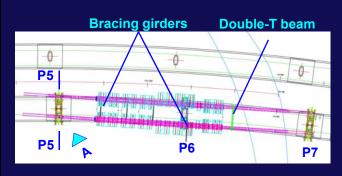
- MSS used to build the bridge superstructure
- Formwork supported by two main parallel truss girders, spaced at 9,5 m

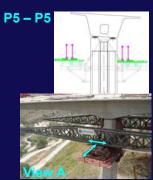
Construction


MSS MEMBERS


Each main girder consists of three parts

Centre is bolted to front and rear by connection frames

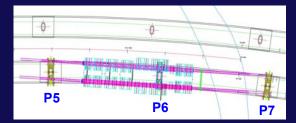




Construction

MSS MEMBERS

- Main girders connected by four transverse bracing girders and a double-T beam
- Bracing girders fitted with sliding devices to clear piers
- Supports for main girders fitted with sliding bearings and hydraulic jacks for longitudinal and transverse movements



Construction

PROCEDURE

- Casting of concrete for one span, e.g. span 6
- Stages for MSS launching
 - Folding back of formwork
 - Disconnection of rear part of main girders from deck
 - Transverse movement for alignment of MSS with curved bridge
 - Opening of front transverse bracing girder to clear the pier P6
 - Longitudinal launching
 - Upon arrival at the pier P7, lifting of launching nose by truck crane

The accident

LAUNCHING OF THE MSS AFTER CASTING OF SPAN 6

- Launching nose lifted by truck crane at pier P7
- After launch of 2 m, power supply outage in right main girder
- Operation stopped
- Collapse after a few moments
 - Initiation at the left main girder according to eyewitnesses
 - Right girder dragged down due to transverse bracings

The accident

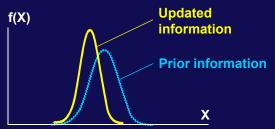
CONSEQUENCES

- 6 persons killed and several injured
- Delay in construction and economic loss
- Loss of public confidence

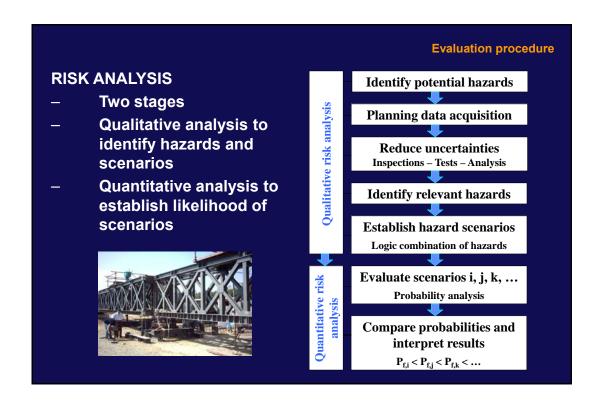
The accident

HOW COULD THIS HAPPEN?

- Only self-weight during launching
- No problems during previous launching stages over equal spans

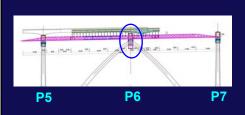

→ Examining magistrate asked for report with dual purpose

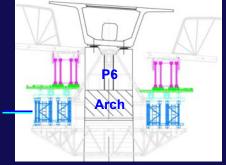
- Establishment of mechanism and causes of the failure
- Assessment of structural reliability: in spite of the collapse, auxiliary structure might have reached reliability level


Evaluation procedure

REMINDER

- Major difference between assessment and design: information available
- In the assessment of existing structures, many uncertainties may be reduced, also in the case of collapsed structures
- Probabilistic methods are most accurate to take into account site-specific data


→ Explicit risk analysis is applied to investigate the collapse


Hazard identification

DIFFERENT CIRCUMSTANCES COMPARED TO PREVIOUS SPANS

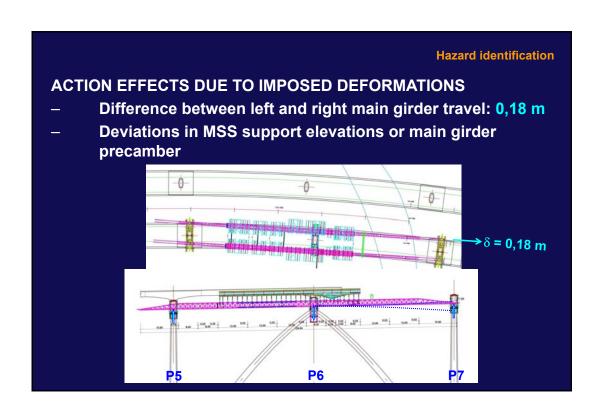
- Nominally identical construction and launching procedure
- But, there are two main differences
 - Bridge geometry at pier P6, resting on the arch, called for ancillary support structure
 - Power supply outage-induced differential travel in left and right main girders

Auxiliary support structure

Hazard identification

POTENTIAL HAZARDS

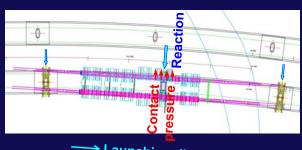
- Potential hazards related to actions, influences, resistance
- Some immediately ruled out as possible origin of accident
 - Settlement
 - Seismic loads
 - Wind
 - Force applied by truck crane: no connection at time of accident

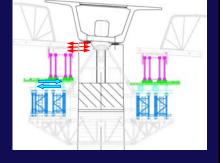


→ Investigative efforts focused on remaining potential hazards

PERMANENT LOADS Nominally, formwork partially folded back to clear pier P6 In reality, formwork completely folded back prior to accident Drawings In situ

Increase in intensity of action effects


 \rightarrow



Hazard identification

SLOW MOTION IMPACT

- MSS is straight in plan view and bridge is curved
- In case of contact, increasing contact pressure during launching
- → Unforeseen horizontal force on supports

→ Launching direction

Hazard identification

DEVIATIONS FROM DESIGN RESISTANCE VALUES

- Deviations from construction tolerances
 - In critical structural members
 - In highly stressed joints, e.g. welds in connection frame

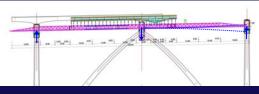
Effects of load inversion and dynamic actions during launching and casting cycles

Reduction of uncertainties

MONITORING

- MSS similar to the one that collapsed
- Monitoring for action effects during a full launch cycle
- Focus on effects due to
 - Differential travel in left and right girders
 - Force applied by truck crane (for informative purposes only)

→ Both hazards irrelevant to the collapse


Reduction of uncertainties

STRUCTURAL ANALYSIS

- Development of different FE models for structural analysis
- Study of action effects on MSS structural members due to
 - Position of the formwork
 - Support elevation
 - Precamber deviations from the nominal geometry

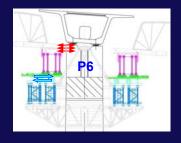
→ Scantly relevant hazards, unlikely to have triggered accident

Reduction of uncertainties

MATERIAL TESTING

- Experimental investigation of material properties
 - Structural members
 - Bolts
 - Welds
- Influence of poor workmanship on the resistance of welds

DCM-ETSICCP UPM 2007


- → Possible deviations from nominal properties irrelevant
- → Deviations from welding tolerances, scantly relevant

Reduction of uncertainties

FULL SCALE TESTING

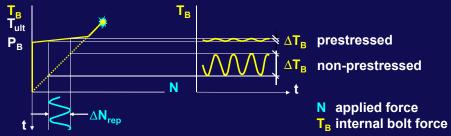
- Fabrication of replicas of support devices at piers P5, P6, P7
- Study of structural behaviour under combined loads
 - Application of vertical loads, V, corresponding to support reactions
 - Application of gradually increasing horizontal load, H, until failure

→ Magnitude of H required for destabilisation unlikely to occur

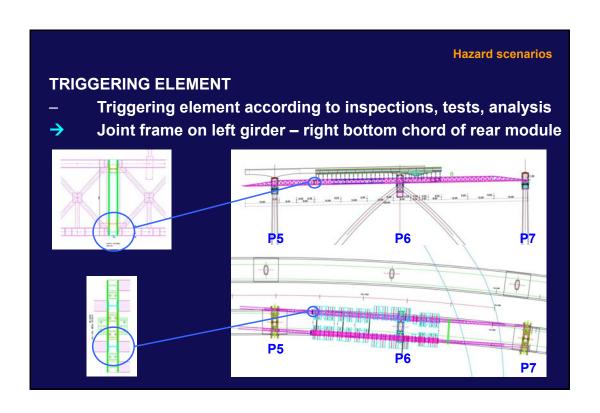
Reduction of uncertainties

FULL SCALE TESTING

- Fabrication of connection frame replicas
 - 4 nominally identical to the frame from the collapsed structure
 - 2 without intermediate stiffener assuming premature failure due to stress concentration or accumulation of plastic deformations
- Experimental study of connection frame and joint resistance



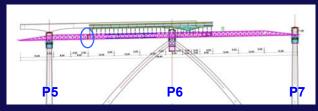
- Weld failure between vertical profile and intermediate stiffener is a relevant hazard
- → Updated probabilistic resistance models for analysis


Reduction of uncertainties


ANALYSIS OF THE BEHAVIOUR OF NON-PRESTRESSED BOLTS

- Connection frames and adjacent modules connected by non-prestressed bolts
- Behaviour of bolts exposed to variable load cycles
 - Number of cycles to failure or bolt nuts loosening depends on ΔT_R
 - Mechanisms may be accelerated by sign-changing load cycles and dynamic effects

→ Loosening of bolt nuts may be relevant to the collapse



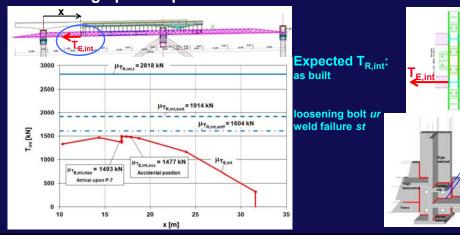
Hazard scenarios

PRIMARY CAUSE

- Primary cause of joint failure could not be unequivocally established
 - More likely: loosening of one or several bolt nuts at the critical joint
 - Less likely: resistance loss in welds due to accumulation of plastic deformations
- Hazard scenarios for quantitative analysis

Hazard scenarios

IDENTIFICATION OF RELEVANT HAZARD SECENARIOS


- Leading influence
 - Loosening of at least one bolt nut at the critical joint and / or
 - Failure of welds at the critical joint
- Accompanying actions
 - Structure self-weight
 - Permanent loads given the actual position of formwork
 - 0,18 m differential travel between left and right main girders
- Accompanying influences
 - Nominal geometry of the MSS including precamber
 - Actual MSS support elevations
 - Deviations from construction tolerances and design resistance

Quantitative assessment

THE PROBLEM R - E

- Failure of critical joint induces system failure: series system
- → Assess P_{f,joint} associated with relevant hazard scenarios by using updated parameters for load and resistance variables

Quantitative assessment

bolt ur

weld st

FAILURE PROBABILITIES

Assuming a loose upper right bolt at the critical joint

$$P_{f,int,bolt} = 0.06 >> P_{f,adm}$$

After weld failure at intermediate stiffener

$$P_{f,int,stiff} = 0.30 >> P_{f,adm}$$

→ Unstable equilibrium at the critical joint

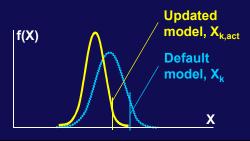
Quantitative assessment

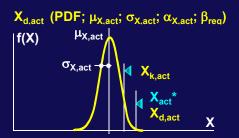
FAILURE MECHANISM

- Results from analysis are compatible with inspections, tests and eyewitness accounts
- Most likely failure mechanism
 - Load inversion and dynamic effects during previous construction
 - Loosening of one or several bolt nuts at critical joint
 - Intra-joint stress redistribution
 - Stress concentration in certain welds
 - Failure of highly stressed welds
 - Stress redistribution and failure of other components
 - Joint failure
 - Collapse

ON THE ASSESSMENT OF SOUND, DETERIORATING AND COLLAPSED STRUCTURES

- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- Analysis of the deteriorating main dome over La Laguna cathedral
- Collapse of the River Verde Viaduct scaffolding system
- Final remarks





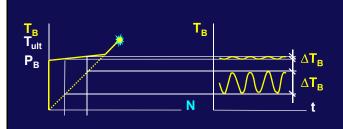
On the assessment of sound, deteriorating and collapsed structures

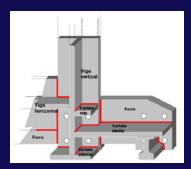
FINAL REMARKS

- In the assessment of existing structures, many uncertainties may be reduced, also in the case of collapsed structures
- Probabilistic methods are most accurate to take into account site-specific data
- Such methods are not fit for use in daily practice
- Rational decision making should be possible by using a partial factor format for assessment

On the assessment of sound, deteriorating and collapsed structures

FINAL REMARKS


- Tools have been developed to accommodate site-specific data by updating characteristic values and partial factors
- Further efforts are needed to extend these tools to the assessment of deteriorating structures



On the assessment of sound, deteriorating and collapsed structures

FINAL REMARKS

- Partial factor method does not always lead to unequivocal conclusions
- In such cases, explicit risk analysis is a powerful decision making tool

