
1 INTRODUCTION 

Existing structures are often affected by severe environmental influences that may yield deterioration and 
gradual loss of their durability and reliability. Hence upgrades of such structures including design of adequate 
construction interventions are becoming an important issue. Construction interventions may also become nec-
essary in case of a change in use, concern about faulty building materials or construction methods, discovery 
of a design/construction error, structural damage following extreme events, complaints from users regarding 
serviceability etc. 

Rehabilitation of these structures is a matter of a great economic significance as more than 50 % of all 
construction activities apply to existing structures, (Diamantidis, Bazzurro 2007). Decisions about various in-
terventions should be always a part of the complex assessment of a structure, considering relevant input data 
including information on actual material properties. 

(Sykora, Holicky 2012) indicated that the assessment of existing structures differs from structural design 
primarily in the following aspects: 
 Increased costs of safety measures, 
 Lower periods of the remaining working life, 
 Different information on actual structural conditions (inspections, tests, measurements). 
These aspects need to be adequately captured in the reliability assessment. 

At present existing structures are mostly verified using simplified deterministic procedures based on the 
partial factor method. Commonly the partial factors recommended for the design of new structures are ap-
plied. However, such assessments are often conservative and may lead to expensive repairs. 

More realistic verification of actual performance of existing structures can be achieved by the design value 
method in accordance with (EN 1990 2002) and (ISO 2394 1998). The submitted study intends to clarify ap-
plications of this method in verifications of existing reinforced concrete structures. A numerical example sup-
plements general procedures and illustrates how the design values and partial factors can be derived for dif-
ferent target reliability levels and remaining working lives. 

The study is based on working materials prepared for the fib Special Activity Group 7 “Assessment and In-
terventions upon Existing Structures”, Working Group “Reliability and safety evaluation” and is intended to 
become a part of the fib bulletin. Comments of WG members are acknowledged. 

2 GENERAL FORMULATION 

Partial factors derived in this study are intended to be applied in conjunction with the load combination rules 
(6.10), or (6.10a,b) given in (EN 1990 2002). In case of structures without prestressing, the reliability verifi-
cation format can be written as: 

Rd ≥ Ed = jG,j Gk,j “+” Q,1 Qk,1 “+” iQ,i 0,i Qk,i; j ≥ 1, i > 1 (1) 

or, alternatively, the less favourable of the two following expressions: 

Rd ≥ Ed = jG,j Gk,j “+” iQ,i 0,i Qk,i; j ≥ 1, i ≥ 1 
Rd ≥ Ed = jj G,j Gk,j “+” Q,1 Qk,1 “+” iQ,i 0,i Qk,i; j ≥ 1, i > 1 (2) 
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where R = resistance; E = load effect;  = partial factor; G = permanent action effect; Q = unfavourable effect 
of load effect;  = reduction factor for the unfavourable permanent actions; and 0 = factor for combination 
value of a variable action. The subscripts “d” and “k” denote design and characteristic values, respectively. 
The symbol “+” implies “to be combined with” and  “the combined effect of”. Note that favourable variable 
actions are not considered in structural verifications based on the partial factor method. 

The partial factors X shall be derived from the actual distribution of the variable X (based on prior infor-
mation, or results of tests or the combination of both). The characteristic values Xk are defined in EN 1990 
(2002) and shall be based on actual material properties and actions. Their derivation is, however, not treated 
in this study. Values of the factors  and 0 are to be accepted from (EN 1990 2002). 

3 MATERIAL FACTOR M 

The design value fd of the material property f can be defined by the relationship: 

fd = fk / M (3) 

The partial factor of a material property can be obtained as a product of: 

M = Rd m = Rd1 Rd2 m (4) 

where Rd1 = partial factor accounting for model uncertainty; Rd2 = partial factor accounting for geometrical 
uncertainties; and m = reliability-based partial factor accounting for variability of the material and statistical 
uncertainty. 

3.1 Model uncertainty factor Rd 

Rd1 = 1.05 for concrete strength and Rd1 = 1.025 for reinforcement may be assumed in common cases, (fib 
SAG 9 2010). However, larger model uncertainty may need to be considered e.g. for punching shear in the 
case when concrete crushing is governing. 

A value of Rd2 = 1.05 may be assumed for geometrical uncertainties of the concrete section size or rein-
forcement position, (fib SAG 9 2010). When relevant measurements on an existing structure indicate insignif-
icant variability of geometrical properties, Rd2 = 1.0 may be considered. 

Alternatively, the partial factor Rd can be obtained from the following relationship based on a lognormal 
distribution: 

Rd = 1 / [(R / Rk) exp(-R R)] (5) 

Table 1. Statistical characteristics of model uncertainties for resistance and load effects (indicative values). _________________________________________________ 
Category Symbol  Model type          _________________________________________________ 
Resistance R,M  Bending moment     1.1 0.1 
concrete R,Vc  Diagonal compression in web 1.4 0.25 
members R,Vs  Tensile force in web    1.0 0.05 
    R,N  Axial compression     1.0 0.05 _________________________________________________ 
Load   E,M  Bending moment     1.0 0.1 
effects  E,V  Shear forces       1.0 0.1 
    E,N  Axial forces       1.0 0.05 _________________________________________________ 
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Figure 1. Variation of the partial factor Rd with the target reliability  for R = 0.32. 

 
where R / Rk = ratio of the mean to the characteristic value of the model uncertainty in resistance R (bias); 
 = sensitivity factor in accordance with (EN 1990 2002);  = target reliability index; and  = coefficient of 
variation. 

Table 1 indicates statistical characteristics of resistance model uncertainties based on the background ma-
terials of fib SAG7, (JCSS 2001) and (Holický, Retief et al. 2007). The lognormal distribution is assumed for 
all the model uncertainties. Considering the models given in Table 1, variation of the partial factor Rd with 
the target reliability  for R = 0.32 is indicated in Figure 1. 

The selection of R = 0.32 deserves additional comments. Annex C of (EN 1990 2002) recommends R = 
0.8 is for resistance variables. When Rd and m are assessed separately considering R = 0.8, overly conserva-
tive designs may be obtained. For instance (Taerwe 1993) thus assumed R = 0.4 × 0.8 = 0.32 for “non-
dominant” resistance variable. 

In principle the factor Rd should be applied to the resistance as follows: 

Rd = R(fck/c, fyk/s,…) / Rd (6) 

where R = resistance function; fc = concrete compressive strength; and fy = yield strength of reinforcement. 
The following approximation, consistent with Equation 4, can be applied in common cases: 

Rd ≈ R[fck/(Rd × c), fyk/(Rd × s),…] (7) 

3.2 Material factor m 

Assuming a lognormal distribution of the material property and characteristic value defined as a 5% fractile, 
the partial factor m is obtained as follows: 

m = fk / fd = exp(R - 1.645)m (8)

Variation of the partial factor m with the coefficient of variation m is shown in Figure 2 for R = 0.8 and tar-
get reliabilities  = 2.3, 3.1, 3.8 or 4.3 (very low, low, medium and high failure consequences in ULS, respec-
tively, (ISO 13822 2010)). 

As an example it is considered that tests of material properties yield coefficients of variation c = 0.15 and 
s = 0.05. For estimation of the flexural resistance, the following partial factors are obtained using Equation 4 
and Figures 1 and 2: 

for  = 3.8: 
C = 1.03 × 1.23 = 1.27; S = 1.03 × 1.07 = 1.10  
for  = 3.1: (9) 
S = 1.00 × 1.13 = 1.13; S = 1.00 × 1.04 = 1.04 

Note that the partial factor C = 1.5 provided in (EN 1992-1-1 2004) has been derived considering Rd1 = 
1.05, Rd2 = 1.05, c = 0.15,  = 3.8 and the additional uncertainty due to the fact that in structural design, the 
concrete strength is assessed from samples not taken from a structure (expressed by an additional factor 1.1). 



The partial factor S = 1.15 provided in (EN 1992-1-1 2004) has been derived considering Rd1 = 1.025, Rd2 = 
1.05, s = 0.06 and  = 3.8. 

4 PERMANENT ACTION FACTOR G 

The design value Gd of the permanent action effect G is defined by the general relationship: 

Gd = G Gk = FG
-1[-E] (10) 

where F-1 = inverse cumulative distribution function; and  = cumulative distribution function of a standard-
ised normal variable. 

The partial factor can be obtained as follows: 

G = Ed,g g (11) 

where Ed,g = partial factor accounting for the model uncertainty in estimation of the load effect using the load 
model; and g = reliability-based partial factor accounting for variability of the permanent action, statistical 
uncertainty and uncertainties related to the model of permanent action. 
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Figure 2. Variation of the partial factor m with the coefficient of variation m for R = 0.8 and  = 2.3, 3.1, 3.8 or 4.3. 

 

2.2 2.5 2.8 3.1 3.4 3.7
1

1.025

1.05

1.075

1.1

4.0

Ed



1.125

E,M, E,V

E,N  

 
Figure 3. Variation of the partial factor Ed with the target reliability  for E = -0.28 (model uncertainty of an unfavourable action). 
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Figure 4. Variation of the partial factor Ed with the target reliability  for E,fav = 0.32 (model uncertainty of a favourable perma-
nent action). 

 

4.1 Model uncertainty factor Ed,g 

Ed,g = 1.05 is normally assumed in structural design for an unfavourable action and Ed,g = 1.0 for a favoura-
ble action, (fib SAG 9 2010). 

Alternatively, the partial factor Ed (in principle the same relationship holds for Ed,g and Ed,q denoting the 
partial factor accounting for model uncertainty in estimation of the variable load effect) can be obtained from 
the following relationship based on a lognormal distribution: 

Ed = (E / Ek) exp(-E E) (12) 

where E / Ek = ratio of the mean to the characteristic value of the model uncertainty in load effect E (bias) 
and E the coefficient of variation of E. 

Assuming probabilistic models given in Table 1, variation of the partial factor Ed obtained from Equa-
tion 12 with the target reliability  is indicated in Figure 3 for E = -0.28 (“non-dominant” variable of an un-
favourable action) and in Figure 4 for E,fav = 0.32 (“non-dominant” variable of a favourable permanent ac-
tion). Note that favourable effects of variable actions are not considered in reliability verifications based on 
the partial factor method and thus Ed,q for favourable variable actions is not provided. 

In principle the factor Ed obtained from Equation 12 should be applied to the load effect as follows: 

Ed = Ed E(g Gk, q Qk,…) (13) 

However, the following approximation consistent with Equation 11 can be used in most cases: 

Ed ≈ E[(Ed × g)Gk, (Ed × q)Qk,…] (14) 

4.2 Factor for the permanent action g 

Assuming a normal distribution of the permanent action and characteristic value defined as the mean value, 
the partial factor g is obtained as follows: 

g = Gd / Gk = 1 - E g (15)

Variation of the partial factor g with the coefficient of variation g is shown in Figure 5 for E = -0.7 (un-
favourable action) and in Figure 6 for E,fav = 0.32 (favourable action) and the target reliabilities  = 2.3, 3.1, 
3.8 or 4.3. Note that E,fav = 0.8 should be accepted when a favourable permanent action significantly con-
tributes to a structural resistance, e.g. in case of stabilizing forces. 

As an example it is considered that in-situ measurements yield g0 = 0.05 for self-weight and g1 = 0.1 for 
other permanent actions. For estimation of bending moments and shear forces, the following partial factors 
for unfavourable permanent actions are obtained using Equation 11 and Figures 3 and 5: 
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Figure 5. Variation of the partial factor g with the coefficient of variation g for  = 2.3, 3.1, 3.8 or 4.3, E = -0.7 (unfavourable ac-
tion). 
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Figure 6. Variation of the partial factor g with the coefficient of variation g for  = 2.3, 3.1, 3.8 or 4.3, E,fav = 0.32 (favourable 
action). 

 

for  = 3.8: 
G0 = 1.11 × 1.13 = 1.25; G1 = 1.11 × 1.27 = 1.41  
for  = 3.1: (16) 
G0 = 1.09 × 1.11 = 1.21; G1 = 1.09 × 1.22 = 1.33 

Note that the partial factor G = 1.35 given in (EN 1990 2002) has been derived considering Ed = 1.05, g = 
0.1 and  = 3.8. 

5 VARIABLE ACTION FACTORS Q 

In many cases no additional information on variable loads, except that provided by valid codes for structural 
design, is available in the assessments of existing structures. The characteristic values and partial factors for 
variable loads should then be based on recommendations of such codes. However, if applicable partial factors 
should be adjusted to a specific situation of the existing structure with respect to assumed reliability levels 
and remaining working lives. 

When site- or structure-specific data on variable loads can be gathered and a detailed assessment needs to 
be made, partial factors for variable loads may be derived using the procedure described in this section. The 
design value Qd of the variable action effect Q is defined by the general relationship: 

Qd = Q Qk = FQtref
-1[-E ] (17) 



where Qtref = maxima of the load effect of a variable action related to a reference period for the reliability ver-
ification tref.

The partial factor Q can be obtained as follows: 

Q = Ed,q q (18) 

where Ed,q = partial factor accounting for model uncertainty in estimation of the load effect from the load 
model; and q = reliability-based partial factor accounting for variability of the variable action, statistical un-
certainty and uncertainties related to the model of variable action. 

5.1 Model uncertainty factor Ed,q 

Ed,q ≈ 1.1 is commonly assumed in structural design for an unfavourable variable action. Alternatively, the 
partial factor Ed,q can be obtained using the procedure described in section 4.1. 

5.2 Factors for the variable loads q 

The partial factor for the variable load q related to the target reliability level  and reference period tref may be 
obtained as follows: 

q = Fqtref
-1[(-E), tref] / qk (19) 

where qtref = maxima of the variable load during the reference period tref. The distribution of the load maxima 
should be based on the same period tref as used for the reliability index , (EN 1990 2002). 

In general the remaining working life tr may differ from the reference period tref. Nevertheless, for existing 
structures exposed to deterioration, it is mostly required to consider tref equal to tr. 

In common cases (EN 1990 2002) allows to approximate the sensitivity factor E by the value -0.7 for the 
leading variable action and by -0.28 for an accompanying variable action. However, available measurements 
may often lead to reduction of uncertainties related to resistance and permanent action effect when assessing 
existing structures. Then, the sensitivity factors for the resistance and permanent actions decrease and the ab-
solute values of the sensitivity factor for the variable actions increase. However, this case-specific effect can 
only be treated by a full-probabilistic approach and thus is not further considered in this study. 

In general the variable load depends on the time-variant component q0(t) and on the time-invariant compo-
nent C0 (including uncertainties related to an accepted load model). In most cases the maxima of the variable 
load related to tref can be obtained as a product of both components: 

qtref = C0 × maxtref[q0(t)] = C0 × q0,tref (20) 

Indicative probabilistic models for the time-invariant and time-variant components of selected variable loads 
are given in Table 2. The models are based on information provided in (JCSS 2001) and (Holický, Sýkora 
2011). More detailed data (e.g. for imposed loads in common types of buildings) are provided by (JCSS 
2001). The models in Table 2 should be considered as informative and should always be carefully revised tak-
ing into account actual loading, structural conditions, and experimental data relevant for a particular structure. 

Assuming the Gumbel distribution of the time-variant component, the mean of q0,tref is obtained as: 

q0,tref = q0 + 0.78q0 ln (tref / t0) (21) 

where t0 = basic reference period for q0(t) (e.g. 1 year for climatic loads, 5 years for the sustained part of im-
posed loads in office buildings, see (CEN/TC250 1996)). The standard deviation remains the same, q0 = 
q0,tref. Note that other theoretical models such as a three-parameter lognormal distribution may be more suit-
able than the Gumbel distribution for some variable loads. 

In many cases it can be considered – as an approximation – that qtref has a Gumbel distribution with the 
following parameters: 

q,tref ≈ C0 q0,tref; 
q,tref ≈ √(C0

2 + q0,tref
2 + C0

2 q0,tref
2) (22) 

where q0,tref = q0 / q0,tref. Consequently, the partial factor is assessed as: 

q ≈ 
q,tref/qk × [1-q,tref(0.45+0.78ln(-ln (-Et)))] (23) 

where qk = characteristic value applied in the assessment. 



As an example the partial factor of the snow load q, obtained from Equation 19, is shown in Figures 7 and 
8 for various coefficients of variation S and different tref, respectively. The different -values and E = -0.7 
are considered. 

It is emphasised that the partial factors are dependent on the assumed probabilistic models. In the reliabil-
ity verification of a particular structure, probabilistic models should be carefully specified taking into account 
actual loading, structural conditions, and relevant experimental data. More detailed analysis should be based 
on a full-probabilistic approach. 

 
 

Table 2. Indicative probabilistic models of selected variable loads. ____________________________________________________________________________________________ 
X  Variable              Distr.  X / Xk               X ____________________________________________________________________________________________ 
C0W Time-invariant component of the wind action LN  0.65                0.3 
vb  Annual maxima of the basic wind velocity  LN*  ~ 1 / {1 - vb[0.45 + 0.78ln(-ln 0.98)]}    ** 
W  Annual maxima of the basic wind pressure  Gum  ~ (1 + vb

2) / {1 - vb[0.45 + 0.78ln(-ln 0.98)]}2 *** ____________________________________________________________________________________________ 
C0S Time-invariant component of the snow load  LN  1                 0.15 
S  Annual maxima of snow load on the ground  Gum  ~ 1 / {1 - S[0.45 + 0.78ln(-ln 0.98)]}    ** ____________________________________________________________________________________________ 
C0Q Uncertainty of the imposed load model    LN  1                 0.1 
Q  5-year maxima of imposed load (offices)****  Gum  0.2                1.1 ____________________________________________________________________________________________ 
*Three-parameter lognormal distribution. **Should be based on meteorological data. Indicative values of S: 0.6-0.7 (lowlands in the 
Czech Republic), 0.4-0.6 (mountains in the Czech Republic). Value of vb should always be based on local meteorological data 
since it is dependent on terrain roughness, orography and altitude. ***W ≈ vb (4 - vb

2 + 6vbvb)
0.5 / (1 + vb

2) where  denotes a 
sample skewness (in the case of insufficient data, Gumbel distribution may be assumed and vb = 1.14 may be considered). 
****Assuming a sustained part of the imposed load is dominating over an intermittent part. 

 
Table 3. Probabilistic models for basic variables considered in the example. _________________________________________________________________________________________________________ 
X  Variable        Source of information   Distr.  X / Xk  X    X ( = 3.1)           Other factors _________________________________________________________________________________________________________ 
G  Permanent action     In-situ measurements   N   1    0.05   g = 1.11, Figure 5   = 0.85* 
C0S Time-inv. comp. snow load  Table 2        LN  1    0.15   -        - 
S  Annual max. snow on ground Meteorological data   Gum  0.25   0.65   q = 1.12     0 = 0.5* 
                                  tref = 15 y., Eq. 23 _________________________________________________________________________________________________________ 
fc  Concrete comp. strength   Tests (sample size n = 20) LN  29.4/40  0.15   c = 1.13, Figure 2  - 
fy  Yield strength of reinforc.  Tests (sample size n = 5)  LN  490/560  0.054   s = 1.05, Figure 2  - _________________________________________________________________________________________________________ 
h  Height of the beam (0.5 m)  In-situ measurements   N   1    0.02   -        - 
b  Width of the beam (0.3 m)  In-situ measurements   det  1    -    -        - 
bcol Width and height - column  Study parameter     N   1    0.01m/xnom -        - 
a  Distance reinf. to surface   In-situ measurements   Gamma 1    0.17   -        - _________________________________________________________________________________________________________ 
R,M Resist. unc. (bending mom.)  Table 1        LN  1.1   0.1   Rd,M = 1.00, Figure 1 - 
R,N Resist. unc. (axial compr.)  Table 1        LN  1    0.05   Rd,N = 1.05, Figure 1 - 
E,M Load eff. unc. (bend. mom.)  Table 1        LN  1    0.1   Ed,M = 1.09, Figure 3 - 
E,N Load eff. unc. (axial forces)  Table 1        LN  1    0.05   Ed,N = 1.04, Figure 3 - _________________________________________________________________________________________________________ 
*(EN 1990 2002) 
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Figure 7. Variation of the partial factor q for the snow load with the coefficient of variation of annual maxima of the snow on the 
ground (tref = 15 or 50 years). 

6 EXAMPLE OF THE BEAM AND COLUMN EXPOSED TO SNOW LOAD 

The structural reliability of an existing reinforced concrete beam and short column exposed to a per- 
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Figure 8. Variation of the partial factor q for the snow load with the reference period (S = 0.6). 

 
manent and snow load is analysed by a full-probabilistic method. Partial factors are obtained by the previous-
ly described procedures for the target reliability index t = 3.1. The reference period tref (equal to a remaining 
working life) is a study parameter. Measurements of material and geometry properties are available and statis-
tical characteristics of the snow load on the ground are provided by a meteorological institute. 

6.1 Actions 

Model uncertainty factors Ed,M and Ed,N for estimation of bending moments (beam) and axial forces (column) 
are obtained from Figure 3. 

A characteristic value of the permanent action Gk = G and its coefficient of variation G are estimated 
from measurements on the structure (Table 3). Gk = 50 kNm (bending moment) and Gk = 3.5 MN (axial com-
pressive force) apply for the beam and column, respectively. The partial factor g is obtained from Figure 5. 

To cover a wide range of load combinations, the load ratio  (study parameter) is introduced: 

 = Qk / (Gk + Qk) (24) 

In general the load ratio may vary within the interval from nearly 0 (underground structures, foundations) up 
to nearly 1 (local effects on bridges, crane girders). For reinforced concrete beams in buildings  is expected 



to vary within the range from 0.4 up to 0.7; for columns within the range from 0.1 to 0.6. Given Gk and , Qk 
can be obtained from Equation 24. 

Statistical characteristics of annual maxima of the snow load on the ground are available (Prague airport, 
S,1 = 0.25 kN/m2 and S,1 = 0.65). The mean of maxima of the snow load on the ground related to the refer-
ence period tref (in years) is derived in case of a Gumbel distribution as follows: 

S,tref = S,1 + 0.78S,1 ln (tref) (25) 

where S,1 = S,tref = standard deviations of maxima of the snow load on the ground related to 1 year and ref-
erence period, respectively. 

The characteristic value sk = 1 kN/m2 is obtained from the Czech snow map. The load effect Qk obtained 
from Equation 24 corresponds to the characteristic value sk multiplied by characteristic values of relevant fac-
tors (shape, exposure and thermal coefficients, loading width, span, etc.) Ck(): 

Ck() = Qk() / sk (26) 

The design load effect is obtained as follows: 

Ed = max[Ed g Gk + Ed q(tref) 0 Ck()sk; 
                 Ed g Gk + Ed q(tref) Ck()sk] (27) 

Partial factors and statistical characteristics of the snow load are provided in Table 3. 

6.2 Resistance 

As a prerequisite, design resistances of the investigated beam and column are assumed equal to the design 
load effects given by Equation 27, Rd = Ed. Flexural resistance of an existing concrete beam is: 

R() = R,M  b(h - a) fy [h - a - 0.5(h - a)fy / fc] (28) 

The probabilistic models are given in Table 3. To satisfy the condition Rd = Ed, the limiting value of the rein-
forcement ratio is: 
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Note that for the expected range of   0.4,0.7 and tref  1 y.,50 y., the reinforcement ratio varies between 
0.25-0.75 % and reinforcement properties are governing the failure. 

The resistance of a centrically loaded, short square column is given as: 

R(bcol) = R,N (fc +  fy) bcol
2 (30) 

The probabilistic models are given in Table 3. In this case, the constant reinforcement ratio  = 0.5 % is con-
sidered and the column width/height bcol is derived to achieve Rd = Ed: 
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For the expected range of   0.1,0.6 and tref  1 y.,50 y., bcol varies between 0.37-0.60 m. For the column 
concrete failure mode is dominant. 

6.3 Reliability analysis 

The structural reliability of the beam and column is analysed by FORM. The limit state function reads: 

Z(X) = 
R,(M or N) R(,tref) – E,(M or N) [G + Ck()C0SStref] (32) 

Figure 9 shows the variation of the reliability index  with  for tref = 15 y. and t = 3.1 based on partial fac-
tors obtained by the design value method. To illustrate benefits of the method, the reliability index for the par-



tial factors recommended for new structures (C = 1.5, S = 1.15, G = 1.35, Q = 1.5), independent of  and 
tref, is plotted for the beam. 
Figure 10 indicates variation of the reliability index  with the reference period tref for  = 0.55 in case of the 
beam and for  = 0.35 in case of the column (the middle values of the expected ranges of ). 

It follows from Figures 9 and 10 that: 
 The design value approach captures well random properties of the basic variables. For the expected ranges 

of , the obtained  values are reasonably close to the target level for different reference periods tref. 

0 0.2 0.4 0.6 0.8
2

3

4

5





3.1

0.7

C = 1.5, S = 1.15 
G = 1.35, Q = 1.5

(beam)

design value
met. (column) 

exp. range 
(beam) 

design value 
met. (beam) 

exp. range 
(column) 

 
Figure 9. Variation of  with  for tref = 15 y. 
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Figure 10. Variation of  with tref = 15 years. 

 
 

 In case of the beam rather lower reliability levels for small values of  can be attributed to the underesti-
mated factors Rd,M (considered value R = 0.32 is rather low compared to the actual sensitivity factors ob-
tained by FORM). 

 Influences of the target reliability (t = 3.1 here) and of information obtained from the measurements are 
not adequately covered when the partial factors recommended for new structures are considered. In this 
example application of the recommended values yields overly conservative structural verifications. 

7 CONCLUDING REMARKS 

Reliability of existing reinforced concrete structures can be efficiently verified using partial factors obtained 
by the design value method. Numerical example reveals that reliability of members verified by the design 
value method is close to a specified target reliability for any reference periods and ratios of permanent to var-
iable actions. Results of measurements can be readily included. 
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