

Assessment of existing structures

MOTIVATION

- The need to assess the reliability of an existing structure may arise from different causes
- All can be traced back to doubts about the structural safety

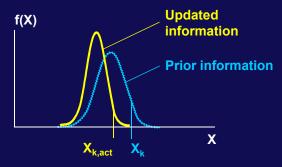
- → Reliability ok for future use ?
- → Staged evaluation procedure, improving accuracy of data

Influence of updated information

ASSESSMENT WITH PARTIAL FACTOR METHOD

- Probabilistic methods are most accurate to take into account updated information
- But they are not fit for use in daily practice
- Partial factor method should be available for assessment

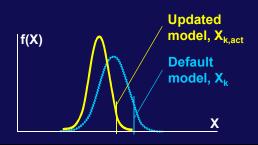
$$\gamma_{\text{E,act}} \cdot \mathsf{E}_{\text{k,act}} \le \frac{\mathsf{R}_{\text{k,act}}}{\gamma_{\text{R,act}}}$$

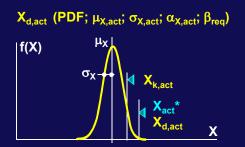


Influence of updated information

ASSESSMENT WITH PARTIAL FACTOR METHOD

Updated characteristic value of X




- Updated partial factor γ_{X,act}
 Can not be derived directly
- $\rightarrow \gamma_{E,act} \cdot E_{k,act} \leq \frac{R_{k,ac}}{\gamma_{R,act}}$
- → Link between probabilistic and partial factor methods: design point, the most probable failure point on LS surface

Work done for sound structures

DEVELOPMENT OF PRACTICAL TOOLS FOR THE ASSESSMENT

- Identification of representative failure modes and LSF
- Adoption of partial factor format for assessment
- Definition of reference period
- Deduction of default probabilistic models
- Establishment of required reliability
- Updating of characteristic values and partial factors

PARTIAL FACTOR FORMAT FOR ASSESSMENT

Design value for action effects

$$\mathsf{E}_{\mathsf{d},\mathsf{act}} = \gamma_{\mathsf{Sd},\mathsf{act}} \cdot \mathsf{E} \bigg\{ \sum_{j \geq 1} \gamma_{\mathsf{g},\mathsf{j},\mathsf{act}} \cdot \mathsf{G}_{\mathsf{k},\mathsf{j},\mathsf{act}} \, " + " \, \gamma_{\mathsf{q},\mathsf{1},\mathsf{act}} \cdot \mathsf{Q}_{\mathsf{k},\mathsf{1},\mathsf{act}} \, " + " \dots \bigg\}$$

 $\begin{array}{ll} \gamma_{\text{f,i,act}} & \text{Updated partial factor for actions (statistical variation)} \\ \gamma_{\text{Sd,act}} & \text{Updated partial factor for the } \\ \text{models for action effects} \\ \text{and for the simplified representation of actions} \end{array}$

Model uncertainties vary depending on the action effects
 → distinguish between

 $\gamma_{\text{Sd,N,act}}$ Bending moments $\gamma_{\text{Sd,N,act}}$ Shear forces $\gamma_{\text{Sd,N,act}}$ Axial forces

Format differs from EC but is more accurate for evaluation

Tools developed

PARTIAL FACTOR FORMAT FOR ASSESSMENT

Design value for resistance

$$R_{\text{d,act}} = \frac{1}{\gamma_{\text{Rd,act}}} \cdot \left\{ \eta_i \cdot \frac{X_{\text{k,i,act}}}{\gamma_{\text{m,i,act}}}; a_{\text{d,act}} \right\}$$

 $\gamma_{m,i,act}$ Updated partial factor for the material or product property

 $\gamma_{Rd,act}$ Updated partial factor for the resistance model

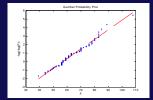
 Model uncertainties vary depending on the resistance mechanism → distinguish between (RC structures)

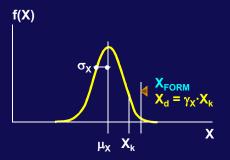
 $\gamma_{Rd,M,act}$ Bending moments

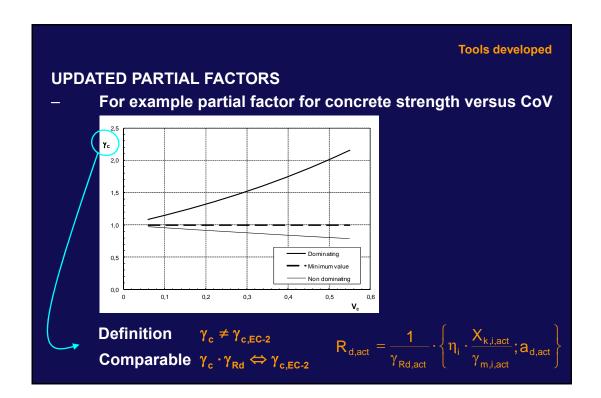
 $\gamma_{Rd,V_s,act}$ Tensile forces in the web

 $\gamma_{Rd,V_c,act}$ Diagonal compression forces in the web

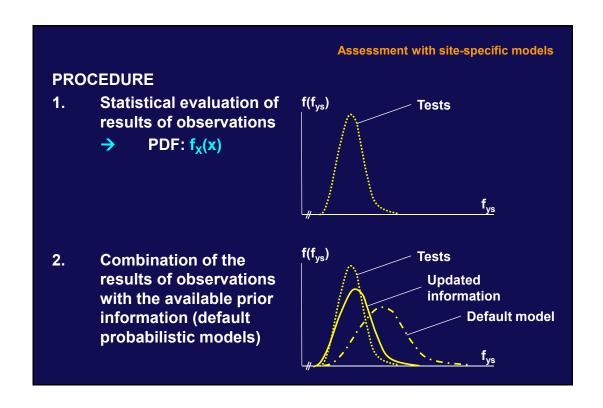
 $\gamma_{Rd,N,act}$ Axial compression forces

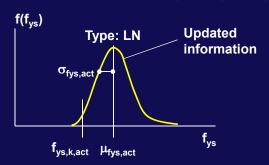

Format differs from EC-2 but is more accurate for evaluation


Tools developed


DEFAULT PROBABILISTIC MODELS COMPLYING WITH THE FOLLOWING REQUIREMENTS

- Representation of physical properties of the corresponding variable
- Consistency with JCSS models
- Representation of the state of uncertainty associated with code rules
- Representation of uncertainties by means of random variables, suitable for practical applications


$$X_i = Type\left(\mu_{X_i}; \sigma_{X_i}\right)$$


Assessment of existing RC structure for new conditions - Site data collection has been decided, planned and carried out → Sample of n test results is available for updating of reinforcement yield strength, fys

Assessment with site-specific models

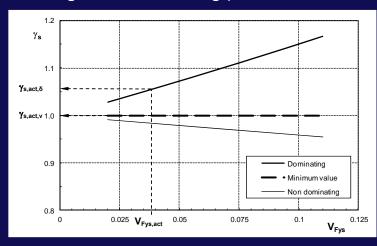
PROCEDURE

3. Description of the updated distribution function by means of relevant parameters: Type; $\mu_{X,act}$; $\sigma_{X,act}$; $x_{k,act}$

4. Coefficient of variation for the relevant function of updated random variables, depending on the partial factor format for assessment

Assessment with site-specific models

EXAMPLE

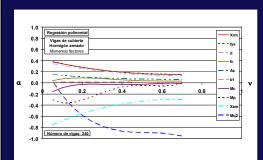

- Partial factor for reinforcing steel takes into account
 - Uncertainties related to the yield strength, f_{vs}
 - Uncertainties related to the cross-sectional area, A_s
- f_{ys} and A_s enter the LSF as a product: tensile force →
 F_{vs} = f_{vs} · A_s
- Only f_{vs} has been updated
- Updated coefficient of variation for the tensile force

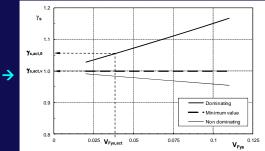
$$V_{\text{Fys,act}} \cong \sqrt{V_{\text{fys,act}}^2 + V_{\text{As}}^2} \qquad V_{\text{fys,act}} = \frac{\sigma_{\text{fys,act}}}{\mu_{\text{fys,act}}} \qquad V_{\text{As}} = 0.02$$

Assessment with site-specific models

PROCEDURE

5. Updated partial factor, considering the updated variable dominating or non dominating (unknown in advance)




Assessment with site-specific models

PROCEDURE

6. Verification of structural safety with updated characteristic values and partial factors: $\mathbf{x}_{ik,act}$; $\gamma_{Xi,act}$

Dominating variable unknown in advance \rightarrow trial and error or considering α_x

Assessment with site-specific models

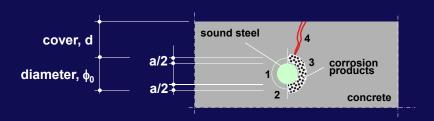
EXAMPLE

- Verification of bending resistance of RC element
- Only f_{ys} has been updated
- Dominating variable: F_{ys}
- − Verification of structural safety: $M_{Ed,act} \le M_{Rd,act}$

$$M_{\text{Rd,act}} = \frac{1}{\gamma_{\text{Rd,M}}} \Biggl(\frac{A_s \cdot f_{ys,k,act}}{\gamma_{s,act,\delta}} \cdot d - 0.5 \Biggl(\frac{A_s \cdot f_{ys,k,act}}{\gamma_{s,act,\delta}} \Biggr)^2 \cdot \frac{\gamma_c}{\eta_c \cdot f_{ck}} \cdot \frac{1}{b} \Biggr)$$

ON THE ASSESSMENT OF DETERIORATING STRUCTURES

- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- La Laguna cathedral
- Final remarks



Performance of corroded elements

MAIN EFFECTS OF CORROSION OF REINFORCEMENT BARS

- 1. Decrease of bar cross-section
- 2. Decrease of ductility of steel (ε_{u} : reduction of 30 to 50%)
- 3. Bond deterioration
- 4. Cracking of concrete cover (due to corrosion products)

→ Corrosion may affect performance at ULS and SLS

Performance of corroded elements

ASSUMPTIONS

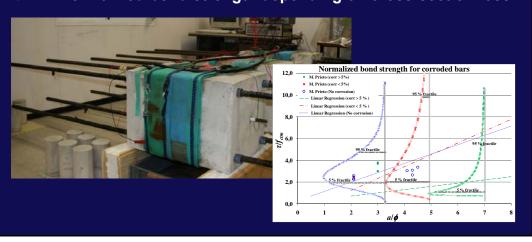
- Lower bound theorem of the theory of plasticity is valid
 A load system, based on a statically admissible stress field which nowhere violates the yield condition is a lower bound to the collapse load.
- Stress field models can be established

- Required information
 - Geometry, particularly remaining bar cross-sections
 - Material properties → ← ◆ ← = →
 - Bond strength

Performance of corroded elements

SITE DATA COLLECTION

Geometry and material properties can be updated



Performance of corroded elements

BOND STRENGTH

- Pull-out tests on specimens with accelerated and natural corrosion
- Normalized bond strength depending on cross-section loss

Performance of corroded elements

SIMPLE MODELS FOR ESTIMATE OF PERFORMANCE OF CORRODED STRUCTURAL ELEMENTS

Example: bending resistance

A - A Upper bound: active

Lower bound: disregarded (spalling)

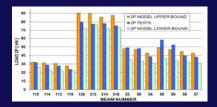
 $A_s(t) = n \frac{\pi (\phi_0 - a(t))^2}{4}$

Similar rules for other failure modes and SLS

Validation of the model

ESTIMATION OF MODEL UNCERTAINTIES

- Available tests from a research project on the residual service life of RC structures [Rodríguez et al.]
- Bending tests on 41 beams, some with accelerated corrosion


Cross-sectional loss: Top < 30,3% Bottom 9,75% to 26,4%

- Bending failure in 25 beams, 15 with corroded reinforcement
- Material properties and geometry have partly been determined for the tested beams
- → Estimation of model uncertainties

Validation of the model

PARAMETERS FOR UNCERTAINTY VARIABLES

Comparison test – model and statistical evaluation of results

Upper bound: active
Lower bound: disregarded
Remaining cross-sections

Model	Distribution	μ	CoV
Lower bound	LN	1,34	0,11
Upper bound	LN	0,97	0,11

- Model for lower bound is conservative
- Lower precision than in bending strength models for sound beams → reasonable

Validation of the model

CONSEQUENCES

- Higher model uncertainties lead to increase in p_f
- Partial factor should be increased

$$R_{\text{d,act}} = \underbrace{\frac{1}{\gamma_{\text{Rd,act}}}} \cdot \left\{ \eta_i \cdot \frac{X_{\text{k,i,act}}}{\gamma_{\text{m,i,act}}}; a_{\text{d,act}} \right\}$$

- > Further studies are required, for example for members with
 - Larger dimensions
 - Natural corrosion

Validation of the model

ONGOING TESTS

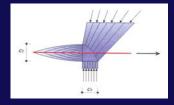
- Industrial building in the northwest of Spain
 - Construction from the 40's of the last century
 - In disuse for 20 years
 - Exposure to marine environment during 70 years
- Change of use
 - Transformation into cultural centre
 - → Partial demolition required

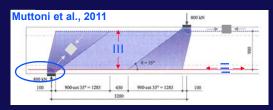
 \rightarrow

Validation of the model

ONGOING TESTS

- Selection of representative, corrosion-damaged members for testing
 - 8 beams
 - 5 columns
 - 1 frame




Validation of the model **FIRST RESULTS** Bending test on beam nº 1 **A** - **A Deformation control Ductile behaviour** Ensayo de flexión 4 puntos viga 1 (LVDT-2) 120 LVDT-2 LVDT-1 100 80 **호** 60 Carga (20 4,84 20 25 30 35 40 45 50 Flecha (mm) 10 15

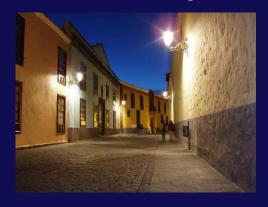
Validation of the model

THEORETICAL LOAD BEARING CAPACITY

- Prior information
 - Geometry: measured on tested beam prior to the test
 - Material properties: determined for members from the same building
- Analysis based on *prior* information using stress field model and comparison to test
 - $M_{ult.t} = 127 kNm$
 - $M_{ult,e} = 123 kNm$

ON THE ASSESSMENT OF DETERIORATING STRUCTURES

- Introduction
- Updated models for the assessment of sound structures
- Corrosion-damaged reinforced concrete structures
- La Laguna cathedral
- Final remarks



Context

SAN CRISTÓBAL DE LA LAGUNA

- Historic city located in Tenerife
- Typical urban structure developed in Latin America during colonisation
- → Declared a UNESCO World Heritage Site in 1999

Context

CATHEDRAL

- Built over former church of Nuestra Señora de los Remedios
- Cathedral since 1818
- Declared in ruins in 1897 due to settlements induced damage
- → Except neo-classical facade, it was completely demolished

Context

CATHEDRAL

- Rebuilt between 1905 and 1913 in neo-gothic style according to engineering drawings by José Rodrigo Vallabriga
- Novel technology was used: reinforced concrete
 - Shorter construction time
 - Lower costs

Motivation

RISKS ASSOCIATED WITH SCANTILY PROVEN TECHNOLOGY

- Aggregates with inbuilt sulfates, chlorides, seashells, ...
- Concrete with high porosity and low resistivity
- High relative humidity and filtration of rainwater
- Ongoing deterioration mechanisms with severe damage to both, concrete and reinforcement
 - Corrosion
 - Spalling
 - ...

Motivation

RISKS ASSOCIATED WITH SCANTILY PROVEN TECHNOLOGY

- Less than 100 years after reconstruction, the cathedral was to be closed to the public again and was propped ...
- Detailed assessment showed
 - Impossibility to detain deterioration mechanisms
 - Technical difficulties and uncertainties entailed in repairing roof
- Recommendation to demolish and rebuild the roof maintaining the rest of the temple

Motivation

WORLD HERITAGE SITE

- Authorities wish to save the existing main dome
- For this purpose, durability requirements are reduced
 - Service period for normal building structures, not for monumental buildings
 - → Future techniques might be suitable to fully detain deterioration mechanisms

GEOMETRY - Global system Lantern Spherical dome Cylindrical "drum" - Structural members of the spherical dome - 8 arches - Shells - Tension ring

Description

STRUCTURAL BEHAVIOUR

- No significant seismic actions
- Distributed loads produce mainly membrane forces → ←
- Thrust is equilibrated by tension ring forces ← ≡ →
- Mainly vertical loads are transmitted to the robust cylindrical "drum"
- Assessment focuses on the dome

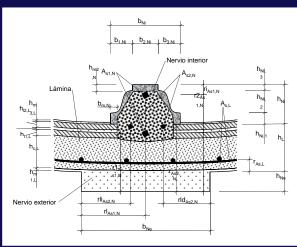
Information

PRIOR INFORMATION

- Previous assessment of the existing building, particularly the lower roof
- Available information about
 - Material properties
 - Cross sections of main elements
 - Deterioration mechanisms
- Prior information for the main dome

Information

DATA ACQUISITION PROGRAM


- Geometry
 - Overall system dimensions
 - Cross sections of structural and ornamental elements
- Self weight and permanent actions
- Material properties
- Qualitative and quantitative determination of damage
 - Cracks
 - Spalling
 - Carbonation and chloride ingress
 - Corrosion velocity and cross section loss
 - Material deterioration such as crystallization of salts, efflorescence, humidity
 - Previous interventions

Updated models CROSS SECTIONS

Parameters for different variables derived from a minimum of 4 measurements

CROSS SECTIONS - Equivalent cross sections for structural analysis Arches Shell Tension ring Output Tension ring Tension ring Tension ring Tension ring Tension ring Tension ring Tension ring

Updated models

SELF WEIGHT AND PERMANENT ACTIONS

- For each layer, j, establishment of
 - Thickness, h_i
 - Density of material, ρ_i

- Mean values and coefficients of variation for self weight and permanent actions
- → Updated partial factors, for example for self weight

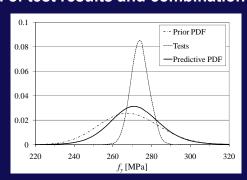
$$\gamma_{g_c,act,\delta} = 1 - \alpha_{g_c} \cdot \beta \cdot \sqrt{V_{\rho_c,act}^2 + V_{h_c,act}^2} = 1,18$$

$$\gamma_{Sd,N,act,v} = \gamma_{Sd,N,v} = e^{-\alpha_{\xi_{E,N}} \cdot \beta \cdot V_{\xi_{E,N}}} = 1,06$$

Updated models

MATERIAL PROPERTIES FOR REINFORCING STEEL

- Manufacture of specimens
- Execution of tensile tests



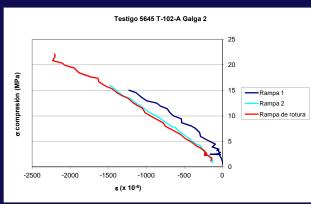
Updated models

MATERIAL PROPERTIES FOR REINFORCING STEEL

Evaluation of test results and combination of information

- Updated parameters: LN; $\mu_{fys,act}$; $\sigma_{fys,act}$; $f_{ys,k,act}$; $\gamma_{s,act}$
- Updated characteristic values

- ϕ < 6 mm: $f_{ys,k,act} = 304 \text{ N/mm}^2$


- $\phi > 6 \text{ mm}$: $f_{ys,k,act} = 262 \text{ N/mm}^2$

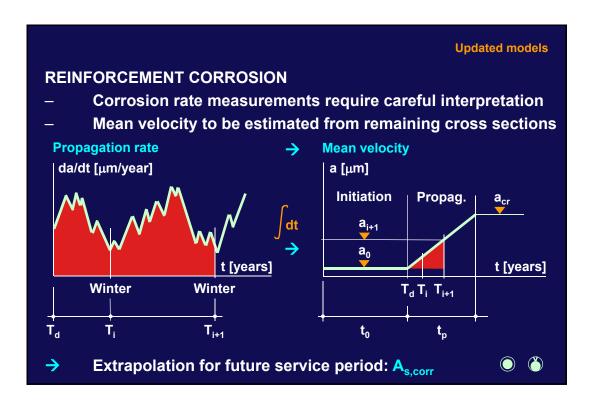
Updated models

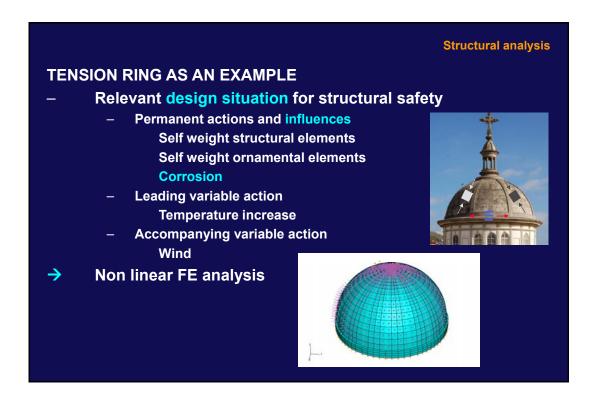
MATERIAL PROPERTIES FOR CONCRETE

- Manufacture of specimens
- Execution of compression tests

Updated models

MATERIAL PROPERTIES FOR CONCRETE


- Evaluation of test results and combination of information
- Updated parameters
 - Compressive strength: LN; $\mu_{fc,act}$; $\sigma_{fc,act}$; $f_{ck,act}$; $\gamma_{c,act}$
 - Modulus of elasticity: $\mu_{Ec,act}$; $\sigma_{Ec,act}$
- Updated characteristic values


 $\begin{array}{lll} - & \text{Arches:} & f_{ck,act} = 6.8 \text{ N/mm}^2 \\ - & \text{Shells:} & f_{ck,act} = 3.1 \text{ N/mm}^2 \\ - & \text{"Drum":} & f_{ck,act} = 4.9 \text{ N/mm}^2 \end{array}$

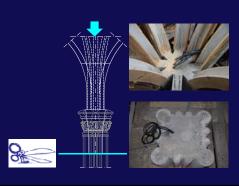
Verification of structural safety

TENSION RING AS AN EXAMPLE

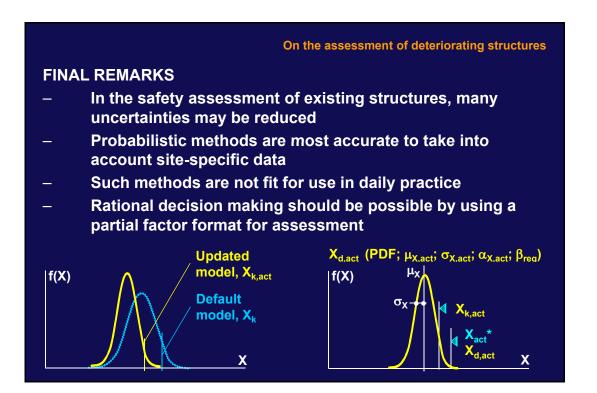
Updated design action effects

 $N_{Ed.act} = 175 \text{ kN}$

Updated design resistance at the end of future service period



Decision


RECOMMENDATION

- Structural reliability can be verified, but
 - Severe damage to concrete and reinforcement
 - Impossibility to detain deterioration mechanisms
 - Technical difficulties and uncertainties entailed in repairing dome
- → Demolition and reconstruction of the roof is advisable

On the assessment of deteriorating structures

FINAL REMARKS

- Tools have been developed to accommodate site-specific data by updating characteristic values and partial factors
- Further efforts are needed to extend these tools to the assessment of deteriorating structures

