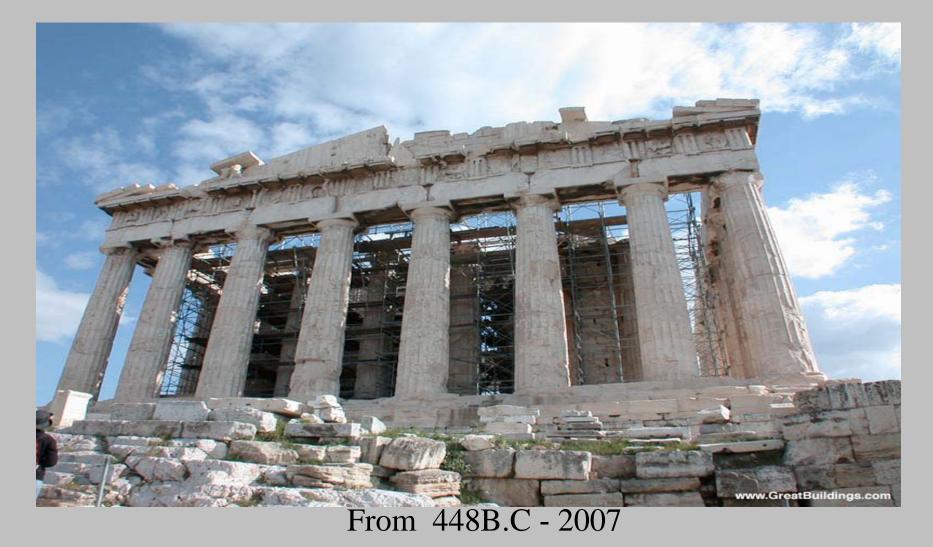


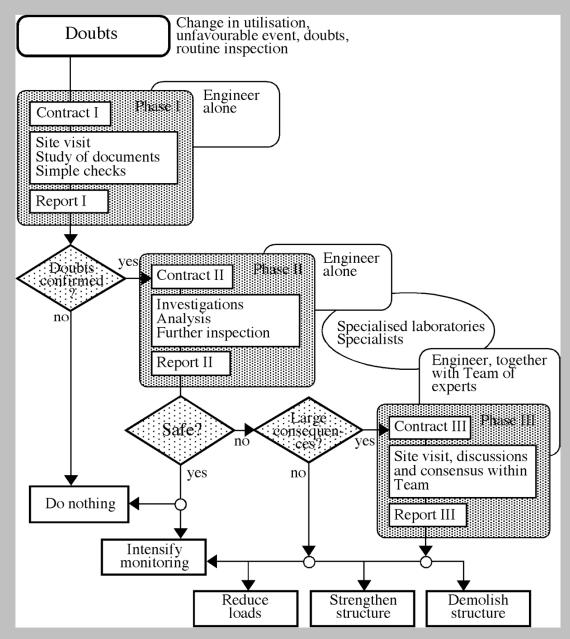
HOCHSCHULE REGENSBURG UNIVERSITY OF APPLIED SCIENCES


Project number: CZ/08/LLP-LdV/TOI/134005

Seminar: Assessment of existing structures

Assessment and Procedures Dimitris Diamantidis Regensburg University of Applied Sciences

Barcelona June 14, 2012


Parthenon

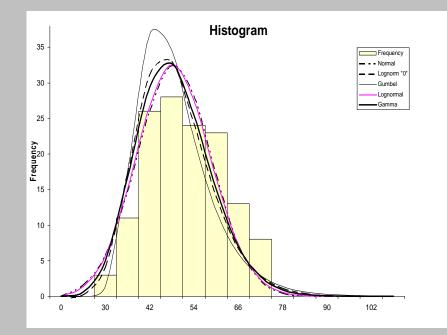
Decision Criteria

- Target reliability
- Economical considerations
- Time constraints
- Sociopolotical aspects
- Codes and standards
- Complexity of analysis
- Experience in other fields

Assessment Process

Phase 1:Preliminary Assessment

- Visual inspection
- Review of documentation
- Code compatibility
- Scoring system:
 - 1. age of the structure
 - 2. general condition
 - **3.** loading (modifications)
 - 4. structural system
 - 5. residual working life



Phase 2: Detailed Assessment

- Quantitative inspections
- Updating of information
- Structural reanalysis
- Reliability analysis
- Acceptance criteria



Phase 3: Expert team

- Additional inspections
- More detailed analyses
- 1. progressive collapse
- 2. full probabilistic
- 3. sensitivity analyses
- 4. risk analyses

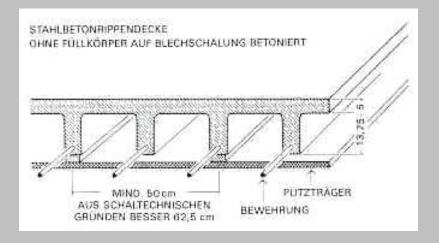
Old Railway Bridges (single span systems)

Old railway bridges Phase 1 Procedure

Railway Bridges

- 100 years old
- Scoring system verification

(foundation, corrosion, joints, supports)


- R (steel resistance) from code on old bridges
- S (train load) from DB
- Durability problems

R.C. Buildings in Germany

- Office building
- Concrete construction
- 70 years old
- Reduced load in order to satisfy minimum safety

Example Concrete floor structure (Phase 2 Procedure)

Reassessment of r.c. floor structure

flexural limit state function

 $\mathbf{g} = \mathbf{M}_{\mathbf{u}} - \mathbf{M}_{\mathbf{a}}$

M_u: Ultimate Bending Moment M_a: Acting Bending Moment

Two Cases for Updating

- Case a) Updating of random variables (due to destructive tests)
- Case b) proof load = 4x design load

Case a) Updating of random variables (due to destructive tests)

Variable	Distribution	C.O.V.	
Steel strength	Lognormal	0.06	
Concrete Strength	Lognormal	0.14	
Cover thickness	Lognormal	0.25	

Reliability index ß is increased from 3.70 (prior information) to 3.80, due to reduced variability of the parameters

Case b) proof load

- Partial proof test until collapse resulted to a very high proof load
- Artificial limit state function

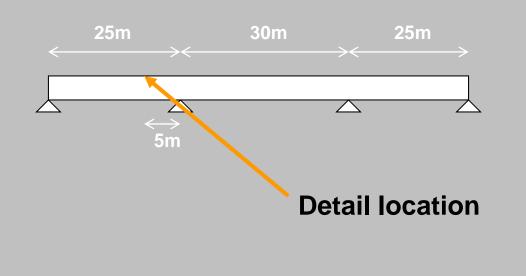
$$g = M_{proof} - M_u <= 0$$

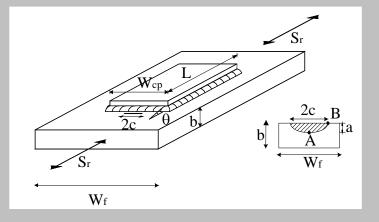
- Computation of conditional failure probability
 - => Reliability index ß is increased from 3.90 to 4.90

Steel road bridges

(Phase 3 Procedure)

Typical limit states

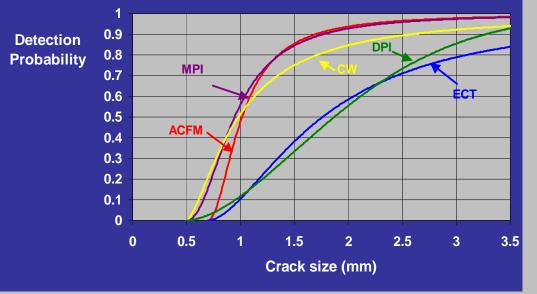

- extreme load
- Fatigue


Which measures are necessary in order to meet acceptance criteria (residual life time 20 years)?

Fatigue models

- Fracture Mechanics approach
- Crack growth propagation
- Influence of inspections (measurement of cracks)

Cover plate detail


Fatigue assessment: Random Variables (2)

Variable	Distribution	Туре	
a _d	POD*	Inspection	
a _g	Uniform	Repair	
a _{fail}	Derived	Mixed	
S _r	Rayleigh		
S _{max}	Gumbel	Load	

* POD for MPI used in case study

Fatigue assessment: scenarios

- Inspection and crack detection at T=30y
- Alternatives considered:
 - 1. Load truncation (LT)
 - 2. Weld toe grinding (G)
 - 3. Load truncation + weld toe grinding (LT+G)

Existing tunnels in Europe

- Accidents in Europe (fire)
- Dangerous goods
- Bi-directional traffic
- Increasing traffic
- High consequences
- > New standards (2004)
- Safety reassessment of more than 400 tunnels!

Road Tunnel in Greece: the problem

- Korinth-Tripolis (PPP-Projekt)
- Bidirectional traffic (2-3 years)
- Length 1365m
- Inclination 1%.
- 20 years old
 - > safety reassessment

Tunnel in Greece: methodology

Hazard probability levels

Class	Frequency Events / yea		
Α	frequent >10		
В	occasional	1-10	
С	remote	0.1-1	
D	improbable 0.01-0.1		
E	incredible 0.001-0.0		

Hazard severity levels

Class	Severity Category	Human losses		
1	insignificant			
2	marginal	injuries		
3	critical	1		
4	severe	5		
5	catastrophic	50		

Risk Acceptability Matrix AL: ACCEPTABLE NAL: NOT ACCEPTABLE ALARP: PRACTCABLE

	1	2	3	4	5
Α	ALARP	NAL	NAL	NAL	NAL
В	ALARP	ALARP	NAL	NAL	NAL
С	AL	ALARP	ALARP	NAL	NAL
D	AL	AL	ALARP	ALARP	NAL
E	AL	AL	AL	ALARP	ALARP

Road Tunnel in Greece: conclusions

- EU-standards NOT satisfied (escape routes)
- High Upgrading costs
- Safety is Acceptable (Risk Matrix Approach, Cost Benefit Analysis)
- Implementation of economical safety measures (illumination)

